Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Villa, Fabio

  • Google
  • 2
  • 3
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Towards a durable polymeric internal coating for diabatic sections in wickless heat pipes4citations
  • 2019Towards a durable polymeric internal coating for diabatic sections in wickless heat pipes4citations

Places of action

Chart of shared publication
Marengo, Marco
2 / 23 shared
Coninck, Jöel De
1 / 1 shared
De Coninck, Jöel
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Marengo, Marco
  • Coninck, Jöel De
  • De Coninck, Jöel
OrganizationsLocationPeople

article

Towards a durable polymeric internal coating for diabatic sections in wickless heat pipes

  • Villa, Fabio
  • Marengo, Marco
  • Coninck, Jöel De
Abstract

Heat pipe characteristics are linked to the surface properties of the diabatic surfaces, and, in the evaporator, surface properties influence both the onset boiling temperature (TONB) and the critical heat flux (CHF). In this work, the effect of surface wettability in pool boiling heat transfer is studied in order to understand if there could be a path to increment heat pipe thermal performance. This work analyzes the effects of surface wettability on boiling (tested fluid is pure water) and proposes a new super-hydrophobic polymeric coating (De Coninck et al., 2017, “Omniphobic Surface Coatings,” Patent No. WO/2017/220591), which can have a very important effect in improving the heat pipe start-up power load and increasing the thermal performance of heat pipes when the flux is lower than the critical heat flux. The polymeric coating is able to reduce the TONB (-11% from 117 ∘C to about 104 ∘C) compared with the uncoated surfaces, as it inhibits the formation of a vapor film on the solid-liquid interface, avoiding CHF conditions up to maximum wall temperature (125 ∘C). This is realized by the creation of a heterogeneous surface with superhydrophobic surface (SHS) zones dispersed on top of a hydrophilic surface (stainless steel surface). The proposed coating has an outstanding thermal resistance: No degradation of SH properties of the coating has been observed after more than 500 thermal cycles.

Topics
  • impedance spectroscopy
  • surface
  • stainless steel