Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Srivas, Pavan Kumar

  • Google
  • 2
  • 5
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Tailoring of TiAl6V4 Surface Nanostructure for Enhanced In Vitro Osteoblast Response via Gas/Solid (Non-Line-of-Sight) Oxidation/Reduction Reactions3citations
  • 2018Dough Extrusion Forming of Titanium Alloys—Green Body Characteristics, Microstructure and Mechanical Properties5citations

Places of action

Chart of shared publication
Li, Jiaqi
1 / 7 shared
Boyan, Barbara D.
1 / 1 shared
Sandhage, Kenneth H.
1 / 3 shared
Berger, Michael B.
1 / 1 shared
Ogura, Naotaka
1 / 1 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Li, Jiaqi
  • Boyan, Barbara D.
  • Sandhage, Kenneth H.
  • Berger, Michael B.
  • Ogura, Naotaka
OrganizationsLocationPeople

article

Dough Extrusion Forming of Titanium Alloys—Green Body Characteristics, Microstructure and Mechanical Properties

  • Srivas, Pavan Kumar
Abstract

<jats:p>Titanium and its alloys are widely used in structural applications owing to superior mechanical properties and corrosion resistance. In the present study, a simple powder metallurgy-based process is developed to fabricate dense components through formation of dough under ambient condition using Ti6Al4V powder along with chitosan powder as dough forming additive and acetic acid as solvent. The prepared samples had ∼66±1.7% green density and 97.3±2.1% sintered density of the theoretical value. The microstructure of Ti6Al4V was investigated using scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) spectroscopy. Micro-CT analysis was carried out for distribution of defects and their influence on flexural strength and microhardness was assessed as well. The prepared green samples had uniform particle distribution that resulted in minimum deformation after sintering. Assessment of mechanical properties revealed that the values of hardness and flexural modulus for sintered samples were comparable to the reported values of Ti6Al4V components prepared using other process. Therefore, the developed method of dough forming for dense titanium components using powder metallurgy route is a simple and viable alternative.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • corrosion
  • scanning electron microscopy
  • extrusion
  • strength
  • flexural strength
  • hardness
  • defect
  • titanium
  • titanium alloy
  • Energy-dispersive X-ray spectroscopy
  • particle distribution
  • sintering