People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Garaniya, Vikram
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Classification of pitting corrosion damage in process facilities using supervised machine learningcitations
- 2022Experimental analysis of pitting corrosion in offshore structurescitations
- 2020Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelinescitations
- 2018Condition monitoring of subsea pipelines considering stress observation and structural deteriorationcitations
- 2017Modelling the impacts of fire in a typical FLNG processing facility
- 2017Modelling the impacts of fire in a typical FLNG processing facility
- 2017Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; Experimental investigation and concomitant challengescitations
- 2017Integrated probabilistic modelling of pitting and corrosion fatigue damage of subsea pipelines
- 2017Pitting degradation modelling of ocean steel structures using Bayesian networkcitations
- 2016Dynamic risk-based maintenance for offshore processing facilitycitations
- 2016Reliability assessment of offshore asset under pitting corrosion using Bayesian Network
- 2016Reliability assessment of offshore asset under pitting corrosion using Bayesian Network
- 2015Modelling of pitting corrosion in marine and offshore steel structures - A technical reviewcitations
Places of action
Organizations | Location | People |
---|
article
Pitting degradation modelling of ocean steel structures using Bayesian network
Abstract
Modelling depth of long-term pitting corrosion is of interest for engineers in predicting the structural longevity of ocean infrastructures. Conventional models demonstrate poor quality in predicting the long-term pitting corrosion depth. Recently developed phenomenological models provide a strong understanding of the pitting process however they have limited engineering applications. In this study, a novel probabilistic model is developed for predicting the long-term pitting corrosion depth of steel structures in marine environment using Bayesian Network. The proposed Bayesian Network model combines an understanding of corrosion phenomenological model and empirical model calibrated using real-world data. A case study, which exemplifies the application of methodology to predict the pit depth of structural steel in long-term marine environment, is presented. The result shows that the proposed methodology succeeds in predicting the time dependent, long-term anaerobic pitting corrosion depth of structural steel in different environmental and operational conditions.