People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Narendra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Interactions between Iron and Nickel in Fe-Ni Nanoparticles on Y Zeolite for Co-Processing of Fossil Feedstock with Lignin-Derived Isoeugenolcitations
- 2023Characterization and Energy Densification of Mayhaw Jelly Production Wastes Using Hydrothermal Carbonizationcitations
- 2023Immunohistochemical Surrogates for Molecular Stratification in Medulloblastomacitations
- 2020Transformation of industrial steel slag with different structure-modifying agents for synthesis of catalystscitations
- 2019Synthesis and Characterization of Novel Catalytic Materials Using Industrial Slag:Influence of Alkaline Pretreatment, Synthesis Time and Temperaturecitations
- 2019Synthesis and Characterization of Novel Catalytic Materials Using Industrial Slagcitations
- 2017A Study on Mechanical Properties and Strengthening Mechanisms of AA5052/ZrB2 In Situ Compositescitations
- 2017High-Temperature Tribology of AA5052/ZrB2 PAMCscitations
- 2014Synthesis and characterization of polypyrrole/H-Beta zeolite nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
High-Temperature Tribology of AA5052/ZrB2 PAMCs
Abstract
<jats:p>AA5052/ZrB2 particulate aluminum matrix composites (PAMCs) have been produced by in situ reaction of K2ZrF6 and KBF4 compounds with molten alloy at about 860 °C. Dry sliding wear and friction of composites have been investigated for a particular sliding velocity and sliding distance at different loads from ambient temperature to 200 °C. It is revealed that for a particular load and temperature, wear rate and normalized wear rate decrease with increase in the volume percentage of ZrB2 particles whereas coefficient of friction (COF) shows a reverse trend. Wear rate and COF also increase with increase in temperature for a constant load and composition. Whereas with load for a particular temperature, wear rate and wear rate per unit vol. % ZrB2 increase while COF decreases. Worn surface and wear debris morphology examined under scanning electron microscopy (SEM) and profilometer to understand the wear mechanism revealed that wear mode transition takes place from mild-oxidative to severe-metallic at 100 °C for unreinforced alloy, whereas a shifting is observed in transition temperature from 100 to 150 °C for composite with 9 vol. % ZrB2 particles. Energy dispersive spectroscopy (EDS) analysis of worn surface confirms the oxidative wear mode. Profilometry results indicate that wear surface has higher surface roughness at higher values of load and temperatures. Prior to wear and friction studies, composites were also characterized by X-ray diffraction (XRD) and SEM for morphology and microstructural characteristics to correlate with wear results. The findings are very helpful to make the AA5052/ZrB2 composites suitable for the applications, where high-temperature wear is a limiting factor.</jats:p>