Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shih, Albert J.

  • Google
  • 1
  • 2
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Workpiece Temperature During Deep-Hole Drilling of Cast Iron Using High Air Pressure Minimum Quantity Lubrication20citations

Places of action

Chart of shared publication
Tai, Bruce
1 / 6 shared
Stephenson, David A.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Tai, Bruce
  • Stephenson, David A.
OrganizationsLocationPeople

article

Workpiece Temperature During Deep-Hole Drilling of Cast Iron Using High Air Pressure Minimum Quantity Lubrication

  • Tai, Bruce
  • Stephenson, David A.
  • Shih, Albert J.
Abstract

<jats:p>This research investigates heat generation and workpiece temperature during deep-hole drilling of cast iron under a high air pressure minimum quantity lubrication (MQL). The hole wall surface (HWS) heat flux, due to drill margin friction and high temperature chips, is of particular interest in deep-hole drilling since it potentially increases the workpiece thermal distortion. This study advances a prior drilling model to quantify the effect of higher air pressure on MQL drilling of cast iron, which is currently performed via flood cooling. Experiments and numerical analysis for drilling holes 200 mm in depth on nodular cast iron work material with a 10 mm diameter drill were conducted. Results showed that the low drill penetration rate can cause intermittent chip clogging, resulting in tremendous heat; however this phenomenon could be eliminated through high air pressure or high feed and speed. Conversely, if the drilling process is stable without chip clogging and accumulation, added high air pressure is found to have no effect on heat generation. The heat flux though the HWS contributes over 66% of the total workpiece temperature rise when intermittent chip clogging occurs, and around 20% to 30% under stable drilling conditions regardless of the air pressure. This paper demonstrated the significance of HWS heat flux and the potential of high air pressure used in conjunction with MQL technology.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • iron
  • nodular cast iron