Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Minev, R.

  • Google
  • 2
  • 8
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Modeling the material microstructure effects on the surface generation process in microendmilling of dual-phase materials17citations
  • 2011The effect of material grain structure on the surface integrity of components processed by microwire electrical discharge machining (μWEDM)citations

Places of action

Chart of shared publication
Dimov, Stefan
2 / 31 shared
Popov, K. B.
1 / 1 shared
Elkaseer, A. M. Abdelrahman
1 / 1 shared
Negm, M.
1 / 1 shared
Rees, A.
1 / 2 shared
Lalev, G.
1 / 5 shared
Olejnik, L.
1 / 4 shared
Rosochowski, A.
1 / 5 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Dimov, Stefan
  • Popov, K. B.
  • Elkaseer, A. M. Abdelrahman
  • Negm, M.
  • Rees, A.
  • Lalev, G.
  • Olejnik, L.
  • Rosochowski, A.
OrganizationsLocationPeople

article

Modeling the material microstructure effects on the surface generation process in microendmilling of dual-phase materials

  • Dimov, Stefan
  • Popov, K. B.
  • Elkaseer, A. M. Abdelrahman
  • Minev, R.
  • Negm, M.
Abstract

<p>The anisotropic behavior of the material microstructure when processing multiphase materials at microscale becomes an important factor that has to be considered throughout the machining process. This is especially the case when chip-loads and machined features are comparable in size to the cutting edge radius of the tool, and also similar in scale to the grain sizes of the phases present within the material microstructure. Therefore, there is a real need for reliable models, which can be used to simulate the surface generation process during microendmilling of multiphase materials.This paper presents a model to simulate the surface generation process during microendmilling of multiphase materials. The proposed model considers the effects of the following factors: the geometry of the cutting tool, the feed rate, and the workpiece material microstructure. Especially, variations of the minimum chip thickness at phase boundaries are considered by feeding maps of the material microstructure into the model. Thus, the model takes into account these variations that alter the machining mechanism from a proper cutting to ploughing and vice versa, and are the main cause of microburr formation. By applying the proposed model, it is possible to estimate more accurately the resulting roughness because the microburr formation dominates the surface generation process during microendmilling of multiphase materials. The proposed model was experimentally validated by machining two different samples of dual-phase steel under a range of chip-loads. The roughness of the resulting surfaces was measured and compared to the predictions of the proposed model under the same cutting conditions. The results show that the proposed model accurately predicts the roughness of the machined surfaces by taking into account the effects of material multiphase microstructure. Also, the developed model successfully elucidates the mechanism of microburr formation at the phase boundaries, and quantitatively describes its contributions to the resulting surface roughness after microendmilling.</p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • phase
  • anisotropic
  • steel