People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blacklock, Matthew
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019A Numerical and Experimental Study of Adhesively-Bonded Polyethylene Pipelinescitations
- 2016Virtual specimens for analyzing strain distributions in textile ceramic compositescitations
- 2016Hybrid cork-polymer composites for improved structural damping performance
- 2015Stochastic virtual tests for fiber composites
- 2015Efficient finite element modelling of Z-pin reinforced composites using the binary model
- 2014Stochastic virtual tests for high-temperature ceramic matrix compositescitations
- 2013A pipeline approach to developing virtual tests for composite materials
- 2012Initial elastic properties of unidirectional ceramic matrix composite fiber towscitations
- 2011Stress-strain response and thermal conductivity degradation of ceramic matrix composite fiber tows in 0-90° uni-directional and woven compositescitations
- 2011Multi-axial failure of ceramic matrix composite fiber towscitations
- 2009Uni-axial stress-strain response and thermal conductivity degradation of ceramic matrix composite fibre towscitations
Places of action
Organizations | Location | People |
---|
article
Multi-axial failure of ceramic matrix composite fiber tows
Abstract
<p>This paper considers the multi-axial stress-strain-failure response of two commercially woven ceramic matrix composites. The different failure mechanisms of uni-axially stressed tows and woven composites are addressed. A model is postulated in which the local transverse and shear stressing, arising from the weave, instantaneously deactivate wake debonding and fiber pullout and initiates dynamic fiber failure; hence, triggering catastrophic failure of the axially stressed region of the tow. The model is shown to predict experimentally measured stress-strain-failure results for the woven composites considered. Simple stress-strain-failure models are also proposed for tows subjected to axial-transverse and axial-shear loadings, but due to the lack of experimental data they have not been validated.</p>