People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chrysochoos, André
Institut de Mathématiques de Marseille
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023Thermal and energy analysis of DMTA testscitations
- 2019Effect of thermomechanical couplings on viscoelastic behaviour of polystyrene
- 2018Viscous dissipation and thermo-mechanical coupling effect in the polymer
- 2018Effect of time and thermo-mechanical couplings on polymers
- 2015Thermomechanical behavior of PA6.6 composites subjected to low cycle fatiguecitations
- 2015Dissipation Assessments During Dynamic Very High Cycle Fatigue Testscitations
- 2014Influence of relative humidity and loading frequency on the PA6.6 cyclic thermomechanical behavior: Part I. mechanical and thermal aspectscitations
- 2014Energy Dissipation and Self-Heating due to Microplastic Deformation Mechanisms at Very High Cycle Fatigue for Single-Phase Ductile Metals
- 2013Energy analysis of the thermomechanical behavior of reinforced polyamides
- 2013Very high cycle fatigue for single phase ductile materials: microplasticity and energy dissipation
- 2013Very High Cycle Fatigue for single phase ductile materials: slip band appearance criterioncitations
- 2013Dissipative and microstructural effects associated with fatigue crack initiation on an Armco ironcitations
- 2012Study of Fatigue Crack Initiation Mechanism on an Armco Iron by Dissipation Assessments and Microstructural Observations
- 2011Microplasticity and energy dissipation in very high cycle fatigue
- 2011Microplasticity and energy dissipation in very high cycle fatigue
- 2011Influence of Dissipated Energy on Shear Band Spacing in HY100 Steelcitations
- 2011Microplasticity evolution in polycrystalline pure copper subjected to very high cycle fatigue
- 2011Microplasticity in polycrystalline pure copper subjected to very high cycle fatigue: thermal and microstructural analyses
- 2010Energy analysis of phase change localization in monocrystalline shape memory alloy
- 2009Local energy analysis of HCF fatigue using DIC & IRT
- 2008Energy Balance of a Semicrystalline Polymer During Local Plastic Deformationcitations
- 2008Infrared image processing for the calorimetric analysis of fatigue phenomenacitations
- 2007Thermographic analysis of fatigue dissipation properties of steel sheets
- 2007Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloyscitations
- 2007Influence of dissipated energy on shear band spacing in HY100 steel
- 2006On the shear band spacing in stainless steel 304Lcitations
- 2006On the shear band spacing in stainless steelcitations
- 2005Thermomechanical couplings and localization phenomena in polymers and shape memory alloys
- 2002Multiscale thermomechanical approaches to SMA behaviour
- 2001Influence of the thermomechanical coupling on the propagation of a phase change frontcitations
- 2001Thermal and dissipative effects accompanying Lüders band propagationcitations
- 2001Analysis of strain localization during tensile tests by digital image correlationcitations
Places of action
Organizations | Location | People |
---|
article
Influence of Dissipated Energy on Shear Band Spacing in HY100 Steel
Abstract
To analyze the formation of multiple shear bands in HY-100 steel, we consider an infinitely extended layer of finite thickness subjected to shear loading. The perturbation approach, associated with numerical methods, is used to determine the instability modes. The criteria of Wright-Ockendon and Molinari are used to determine the shear band spacing. The hypothesis consisting in considering the proportion of plastic work dissipated as heat (quantified by the Taylor-Quinney coefficient B) as independent of the loading path is now recognized as highly simplistic. The present work attempts to provide a systematic approach to the inelastic heat fraction evolution for a general loading within the framework of thermoviscoplastic standard modeling including a number of material parameters as strain hardening, strain rate sensitivity, thermal softening. The effect of each material parameter on the shear band spacing is determined by using a power law constitutive relation. The Johnson Cook and power law models are used to illustrate the influence of the constitutive relation on the results for the adiabatic shear band spacing, by studying the response of HY-100 steel. We have compared our results with available experimental results in the literature over a very wide range of strain rate (103 -105 s-1) . In this study, we show that the variation of the Taylor-Quinney parameter, B(y), as a function of shear strain is an important parameter that plays a significant role in the calculation of the shear band spacing.