People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolari, Kari
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2023Modelling of aged reinforced concrete structures for design extension conditions (CONFIT)
- 2022Strength of Ice in Brittle Regime—Multiscale Modelling Approachcitations
- 2022Strength of Ice in Brittle Regime—Multiscale Modelling Approachcitations
- 2022Modelling the effect of concrete cement composition on its strength and failure behaviorcitations
- 2020Numerical assessment of the effects of microcrack interaction in AM componentscitations
- 2012A local remeshing procedure to simulate crack propagation in quasi-brittle materialscitations
- 2010Simulation of ice crushing experiment using FE-model update technique
- 2009Modeling and verification of creep strain and exhaustion in a welded steam mixercitations
- 2008Modelling and verification of creep strain and exhaustion in a welded steam mixer
Places of action
Organizations | Location | People |
---|
article
Modeling and verification of creep strain and exhaustion in a welded steam mixer
Abstract
Structures operating in the creep regime will consume their creep life at a greater rate in locations where the stress state is aggravated by triaxiality constraints. Many structures, such as the welded steam mixer studied here, also have multiple material zones differing in microstructure and material properties. The three-dimensional structure as such, in addition to interacting material zones, is a great challenge for finite element analysis (FEA), even to accurately pinpoint the critical locations where damage will be found. The studied steam mixer, made of 10CrMo 9-10 steel (P22), has after 100,000 h of service developed severe creep damage in several saddle point positions adjacent to nozzle welds. FE-simulation of long term behavior of this structure has been performed taking developing triaxiality constraints, material zones, and primary to tertiary creep regimes into account. The creep strain rate formulation is based on the logistic creep strain prediction model implemented to ABAQUS , including primary, secondary, and tertiary creep. The results are presented using a filtering technique utilizing the formulation of rigid plastic deformation for describing and quantifying the developing “creep exhaustion.”