Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hernandez-Ortega, J. J.

  • Google
  • 1
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Experimental Investigation of Porosity Formation During the Slow Injection Phase in High-Pressure Die-Casting Processes11citations

Places of action

Chart of shared publication
Zamora, R.
1 / 1 shared
Hernandez, J.
1 / 3 shared
Faura, F.
1 / 1 shared
Lopez, J.
1 / 5 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Zamora, R.
  • Hernandez, J.
  • Faura, F.
  • Lopez, J.
OrganizationsLocationPeople

article

Experimental Investigation of Porosity Formation During the Slow Injection Phase in High-Pressure Die-Casting Processes

  • Zamora, R.
  • Hernandez, J.
  • Hernandez-Ortega, J. J.
  • Faura, F.
  • Lopez, J.
Abstract

<jats:p>The air entrapment mechanisms in die-casting injection chambers that may produce porosity in manufactured parts are analyzed in this work using visualization techniques of the flow in a transparent injection chamber model, using water as working fluid. In particular, results for the free-surface profile evolution and for the volume of air remaining in the chamber at the instant at which the water begins to flow through the runner are analyzed for different maximum plunger speeds and initial filling fractions. A comparison between these visualizations and the numerical results of Zamora et al. (2007, “Experimental Verification of Numerical Predictions for the Optimum Plunger Speed in the Slow-Phase of a High-Pressure Die Casting Machine,” Int. J. Adv. Manuf. Technol., 33, pp. 266–276) which were obtained using a three-dimensional numerical model, shows a good degree of agreement. After discussing the air entrapment mechanisms that may produce porosity in manufactured parts, different experiments, which were carried out under real operating conditions using an aluminum alloy in a high-pressure die-casting machine with horizontal cold chamber, will be presented. The die-cavity geometry used in the experiments was appropriately modified to isolate the slow shot phase from the rest of the injection process, and the porosity levels in the manufactured parts were measured using a gravimetric technique. The optimum values of the maximum plunger speed that minimizes porosity in the manufactured parts have been determined. These values are very close to the previous numerical predictions of López et al. (2003, “On the Critical Plunger Speed and Three-Dimensional Effects in High-Pressure Die Casting Injection Chambers,” ASME J. Manuf. Sci. Eng., 125, pp. 529–537)</jats:p>

Topics
  • surface
  • phase
  • experiment
  • aluminium
  • porosity
  • die casting