Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guo, S. M.

  • Google
  • 1
  • 4
  • 103

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002A converging slot-hole film-cooling geometry - Part 2: Transonic nozzle guide vane heat transfer and loss103citations

Places of action

Chart of shared publication
Rawlinson, A. J.
1 / 1 shared
Lock, Gary
1 / 2 shared
Sargison, J. E.
1 / 1 shared
Oldfield, M. L. G.
1 / 1 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Rawlinson, A. J.
  • Lock, Gary
  • Sargison, J. E.
  • Oldfield, M. L. G.
OrganizationsLocationPeople

article

A converging slot-hole film-cooling geometry - Part 2: Transonic nozzle guide vane heat transfer and loss

  • Rawlinson, A. J.
  • Lock, Gary
  • Sargison, J. E.
  • Oldfield, M. L. G.
  • Guo, S. M.
Abstract

This paper presents the first experimental measurements on an engine representative nozzle guide vane, of a new film-cooling hole geometry, a convergingslot-hole or console. The patented console geometry is designed to improve the heat transfer and aerodynamic performance of turbine vane and rotor blade cooling systems. These experiments follow the successful validation of the console design in low-speed flat-plate tests described in Part 1 of this paper. Stereolithography was used to manufacture a resin model of a transonic, engine representative nozzle guide vane in which seven rows of previously tested fan-shaped film-cooling holes were replaced by four rows of consoles. This vane was mounted in the annular vane ring of the Oxford cold heat transfer tunnel for testing at engine Reynolds numbers, Mach numbers and coolant to mainstream momentum flux ratios using a heavy gas to simulate the correct coolant to mainstream density ratio. Heat transfer data were measured using wide-band thermochromic liquid crystals and a modified analysis technique. Both surface heat transfer coefficient and the adiabatic cooling effectiveness were derived from computer-video records of hue changes during the transient tunnel run. The cooling performance, quantified by the heat flux at engine temperature levels, of the console vane compares favourably with that of the previously tested vane with fan-shaped holes. The new console film-cooling hole geometry offers advantages to the engine designer due to a superior aerodynamic efficiency over the fan-shaped hole geometry. These efficiency measurements are demonstrated by results from midspan traverses of a four-hole pyramid probe downstream of the nozzle guide vane.

Topics
  • density
  • impedance spectroscopy
  • surface
  • experiment
  • resin
  • liquid crystal