People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouten, Cvc Carlijn
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023How Smart are Smart Materials?citations
- 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materialscitations
- 2020Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterialscitations
- 2019Macrophage-driven biomaterial degradation depends on scaffold microarchitecturecitations
- 2018Intrinsic cell stress is independent of organization in engineered cell sheetscitations
- 2017Biomaterial-driven in situ cardiovascular tissue engineering : a multi-disciplinary perspectivecitations
- 2017Porous scaffolds using dual electrospinning for in situ cardiovascular tissue engineeringcitations
- 2017Mechanically robust electrospun hydrogel scaffolds crosslinked via supramolecular interactionscitations
- 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterialscitations
- 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials:In vitro degradation pathwayscitations
- 2014Monocytic cells become less compressible but more deformable upon activationcitations
- 2013Mechanical analysis of ovine and pediatric pulmonary artery for heart valve stent designcitations
- 2003Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valvecitations
Places of action
Organizations | Location | People |
---|
article
Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve
Abstract
Tissue-engineered tri-leaflet aortic valves are a promising alternative to current valve replacements. However, the mechanical properties of these valves are insufficient for implantation at the aortic position. To simulate the effect of collagen remodeling on the mechanical properties of the aortic valve, a finite element model is presented. In this study collagen remodeling is assumed to be the net result of collagen synthesis and degradation. A limited number of fibers with low initial fiber volume fraction is defined and depending on the loading condition the fibers are either synthesized or degraded. The synthesis and degradation of collagen fibers are both assumed to be functions of individual fiber stretch and fiber volume fraction. Simulations are performed for closed aortic valve configurations and the open aortic valve configuration. The predicted fiber directions for the closed configurations are close to the fiber directions as measured in the native aortic valve. The model predicts the evolution in collagen fiber content and the effect of remodeling on the mechanical properties.