People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rüggeberg, Markus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Physical properties of wood-based materials for liquid deposition modelingcitations
- 2022Cellulose lattice strains and stress transfer in native and delignified woodcitations
- 2021Quasi-static and fatigue performance of bonded acetylated rubberwood (Hevea brasiliensis, Mull. Arg.)citations
- 2020CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspencitations
- 2019Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modificationscitations
- 2019Mechanical behaviour of chemically modified Norway spruce ( Picea abies L. Karst.): experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrenecitations
- 2018A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopycitations
- 2017Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for CINNAMYL ALCOHOL DEHYROGENASE (CAD)citations
- 2017Estimating shear properties of walnut wood: a combined experimental and theoretical approachcitations
- 2016Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modellingcitations
- 2015Bio-inspired wooden actuators for large scale applicationscitations
- 2015Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactionscitations
Places of action
Organizations | Location | People |
---|
article
CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen
Abstract
<p>Cellulose microfibrils synthesized by CELLULOSE SYNTHASE COMPLEXES (CSCs) are the main load-bearing polymers in wood. CELLULOSE SYNTHASE INTERACTING1 (CSI1) connects CSCs with cortical microtubules, which align with cellulose microfibrils. Mechanical properties of wood are dependent on cellulose microfibril alignment and structure in the cell walls, but the molecular mechanism(s) defining these features is unknown. Herein, we investigated the role of CSI1 in hybrid aspen (Populus tremula × Populus tremuloides) by characterizing transgenic lines with significantly reduced CSI1 transcript abundance. Reduction in leaves (50-80%) caused leaf twisting and misshaped pavement cells, while reduction (70-90%) in developing xylem led to impaired mechanical wood properties evident as a decrease in the elastic modulus and rupture. X-ray diffraction measurements indicate that microfibril angle was not impacted by the altered CSI1 abundance in developing wood fibres. Instead, the augmented wood phenotype of the transgenic trees was associated with a reduced cellulose degree of polymerization. These findings establish a function for CSI1 in wood mechanics and in defining leaf cell shape. Furthermore, the results imply that the microfibril angle in wood is defined by CSI1 independent mechanism(s).</p>