Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zabala Torres, Alaitz

  • Google
  • 1
  • 4
  • 12

Universitat Autònoma de Barcelona

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019A provenance metadata model integrating ISO geospatial lineage and the OGC WPS: Conceptual model and implementation12citations

Places of action

Chart of shared publication
Closa, Guillem
1 / 1 shared
Masó, Joan
1 / 1 shared
Pons, Xavier
1 / 3 shared
Pesquer Mayos, Lluís
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Closa, Guillem
  • Masó, Joan
  • Pons, Xavier
  • Pesquer Mayos, Lluís
OrganizationsLocationPeople

article

A provenance metadata model integrating ISO geospatial lineage and the OGC WPS: Conceptual model and implementation

  • Zabala Torres, Alaitz
  • Closa, Guillem
  • Masó, Joan
  • Pons, Xavier
  • Pesquer Mayos, Lluís
Abstract

© 2019 The Authors. Transactions in GIS published by John Wiley&Sons Ltd Nowadays, there are still some gaps in the description of provenance metadata. These gaps prevent the capture of comprehensive provenance, useful for reuse and reproducibility. In addition, the lack of automated tools for capturing provenance hinders the broad generation and compilation of provenance information. This work presents a provenance engine (PE) that captures and represents provenance information using a combination of the Web Processing Service (WPS) standard and the ISO 19115 geospatial lineage model. The PE, developed within the MiraMon GIS & RS software, automatically records detailed information about sources and processes. The PE also includes a metadata editor that shows a graphical representation of the provenance and allows users to complement provenance information by adding missing processes or deleting redundant process steps or sources, thus building a consistent geospatial workflow. One use case is presented to demonstrate the usefulness and effectiveness of the PE: the generation of a radiometric pseudo-invariant areas bench for the Iberian Peninsula. This remote-sensing use case shows how provenance can be automatically captured, also in a non-sequential complex flow, and its essential role in the automation and replication tasks in work with very large amounts of geospatial data.

Topics
  • impedance spectroscopy