People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pierron, Fabrice
Laboratoire de Mécanique et Procédés de Fabrication
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Into a rapid polymer characterization employing optical measurement systems and high-power ultrasonic excitationcitations
- 2021High strain rate elasto-plasticity identification using the Image-Based Inertial Impact (IBII) test part 1: Error quantificationcitations
- 2021Assessment of the heterogeneous microstructure in the vicinity of a weld using thermographic measurements of the full-field dissipative heat sourcecitations
- 2021Assessment of the heterogeneous microstructure in the vicinity of a weld using thermographic measurements of the full-field dissipative heat sourcecitations
- 2021Data rich imaging approaches assessing fatigue crack initiation and early propagation in a DS superalloy at room temperaturecitations
- 2021High strain rate elasto-plasticity identification using the Image-Based Inertial Impact (IBII) test part 2: Experimental validationcitations
- 2020Dynamic VFM to Identify Viscoplastic Parameters. Analysis of Impact Tests on Titanium Alloy
- 2020The off-axis IBII test for compositescitations
- 2020Microstructural assessment of 316L stainless steel using infrared thermography based measurement of energy dissipation arising from cyclic loadingcitations
- 2020Image-based inertial impact (IBII) tests for measuring the interlaminar shear moduli of composites
- 2019A Manual for Conducting Image-Based Inertial Impact (IBII) Tests
- 2019Dynamic VFM to Identify Viscoplastic Parameters. Analysis of Impact Tests on Titanium Alloy
- 2019Image-Based Inertial Impact Test for Characterisation of Strain Rate Dependency of Ti6Al4V Titanium Alloycitations
- 2019A computational approach to design new tests for viscoplasticity characterization at high strain-ratescitations
- 2019Characterising the compressive anisotropic properties of analogue bone using optical strain measurementcitations
- 2019A benchmark testing technique to characterize the stress–strain relationship in materials based on the spalling test and a photomechanical methodcitations
- 2018A novel image-based ultrasonic test to map material mechanical properties at high strain-ratescitations
- 2018Strain accumulation and fatigue crack initiation at pores and carbides in a SX superalloy at room temperaturecitations
- 2018Inertial impact tests to identify the plastic properties of metalscitations
- 2018Image-based inertial impact test for composite interlaminar tensile propertiescitations
- 2018Image-based high strain rate testing of orthopaedic bone cementcitations
- 2018A practical procedure for measuring the stiffness of foam like materialscitations
- 2018An image-based approach for measuring dynamic fracture toughness
- 2018Image-based high strain-rate testing for the characterization of viscoplasticity
- 2017Conception d’un essai purement inertiel pour la caractérisation du comportement dynamique de matériaux métalliques par la Méthode des Champs Virtuels
- 2017Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by SEM-DIC in an advanced disc alloycitations
- 2017Deformation mechanisms of idealised cermets under multi-axial loadingcitations
- 2014The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compressioncitations
- 2012Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir weldscitations
- 2012Identification of constitutive properties of composite materials under high strain rate loading using optical strain measurement techniques
- 2011Texture evolution in Nd:YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical propertiescitations
- 2011Full-field strain measurement and identification of composites moduli at high strain rate with the Virtual Fields Methodcitations
- 2010Comparison of two approaches for differentiating full-field data in solid mechanicscitations
- 2009Full-field evaluation of the onset of microplasticity in a steel specimen
- 2009Variation of transverse and shear stiffness properties of wood in a treecitations
- 2008Identification of viscoplastic parameters and characterization of Lüders behaviour using digital image correlation and the virtual fields methodcitations
- 2008Identification of heterogeneous constitutive parameters in a welded specimen: Uniform stress and virtual fields methods for material property estimationcitations
- 2008Identification of elasto-visco-plastic parameters and characterization of Lüders behavior using digital image correlation and the virtual fields methodcitations
- 2007Novel experimental approach for longitudinal-radial stiffness characterisation of clear wood by a single testcitations
- 2006Identification of the Through-Thickness Orthotropic Stiffness of Composite Tubes from Full-Field Measurementscitations
- 2006Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields methodcitations
Places of action
Organizations | Location | People |
---|
article
Assessment of the heterogeneous microstructure in the vicinity of a weld using thermographic measurements of the full-field dissipative heat source
Abstract
During a material deformation process, part of the mechanical energy is dissipated as heat due to thermodynamically irreversible processes occurring at the microscale of the material. In particular, part of the plastic deformation energy is transformed into heat and is referred to as “intrinsic dissipation” as it is intrinsic to the material behaviour. The intrinsic dissipation is a heat source that is sensitive to microstructural states it can be used to identify different microstructural regions resulting from material processing such as welding. To determine the heat source in a full-field manner, it is necessary to use an infrared camera to measure any temperature rise in a specimen undergoing elastic cyclic loading. Unlike the intrinsic dissipative heat source, the temperature change is sensitive to thermal exchanges with the surroundings. Hence, the thermomechanical heat diffusion equation is used to determine the full-field dissipative heat from the thermographic temperature measurement by implementing an image processing procedure based on least squares fitting enabled by specially devised experimental approach. The procedure is verified by deriving both the thermoelastic and dissipative heat sources from a ‘hole-in-plate’ specimen manufactured from 316L stainless steel, i.e. a specimen with a known stress distribution. The approach is then applied to a 316L laser welded specimen and it is demonstrated that the different microstructures resulting from the welding process can be identified with the procedure. The heterogeneous microstructure is confirmed using micrographs and further verified by the different stress-strain behaviour obtained for each microstructural region using Digital Image Correlation (DIC).