Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marek, Aleksander

  • Google
  • 2
  • 4
  • 19

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021High strain rate elasto-plasticity identification using the Image-Based Inertial Impact (IBII) test part 1: Error quantification11citations
  • 2021High strain rate elasto-plasticity identification using the Image-Based Inertial Impact (IBII) test part 2: Experimental validation8citations

Places of action

Chart of shared publication
Pierron, Fabrice
2 / 41 shared
Davis, Frances M.
2 / 2 shared
Dreuilhe, Sarah Marie
2 / 2 shared
Fletcher, Lloyd
2 / 12 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Pierron, Fabrice
  • Davis, Frances M.
  • Dreuilhe, Sarah Marie
  • Fletcher, Lloyd
OrganizationsLocationPeople

article

High strain rate elasto-plasticity identification using the Image-Based Inertial Impact (IBII) test part 2: Experimental validation

  • Pierron, Fabrice
  • Davis, Frances M.
  • Dreuilhe, Sarah Marie
  • Marek, Aleksander
  • Fletcher, Lloyd
Abstract

Current high strain rate testing techniques typically rely on the split-Hopkinson bar (SHB). The early response in an SHB test is corrupted by inertia making it difficult to accurately characterise the transition from elasticity to plasticity for metals. Therefore, a new test method is required. This article is the second in a two part series which aims at developing a new high strain rate test for elasto-plasticity identification using the ImageBased Inertial Impact (IBII) method. The goal of this article is to validate the new method experimentally using IBII tests on aluminium 6082-T6 (minimal rate sensitivity) and stainless steel 316L (rate sensitive). Comparison of the quasi-static and dynamic stress-strain curves for the aluminium case showed minimal difference providing experimental validation of the method. The same comparison for the steel showed that the method was able to detect rate sensitivity.<br/>

Topics
  • impedance spectroscopy
  • stainless steel
  • aluminium
  • stress-strain curve
  • elasticity
  • plasticity