People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lacourpaille, Lilian
Nantes Université
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Hamstring muscle activation strategies during eccentric contractions are related to the distribution of muscle damagecitations
- 2018Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle.citations
- 2017Cryotherapy induces an increase in muscle stiffness.citations
- 2017Early detection of exercise-induced muscle damage using elastography.citations
- 2017Effects of Duchenne muscular dystrophy on muscle stiffness and response to electrically-induced muscle contraction: A 12-month follow-up.citations
- 2017Effects of warm-up on hamstring muscles stiffness: Cycling vs foam rolling.citations
- 2017The nervous system does not compensate for an acute change in the balance of passive force between synergist muscles.citations
- 2014Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography.citations
Places of action
Organizations | Location | People |
---|
article
Cryotherapy induces an increase in muscle stiffness.
Abstract
Although cold application (ie, cryotherapy) may be useful to treat sports injuries and to prevent muscle damage, it is unclear whether it has adverse effects on muscle mechanical properties. This study aimed to determine the effect of air-pulsed cryotherapy on muscle stiffness estimated using ultrasound shear wave elastography. Myoelectrical activity, ankle passive torque, shear modulus (an index of stiffness), and muscle temperature of the gastrocnemius medialis were measured before, during an air-pulsed cryotherapy (-30°C) treatment of four sets of 4 minutes with 1-minute recovery in between and during a 40 minutes postcryotherapy period. Muscle temperature significantly decreased after the second set of treatment (10 minutes: 32.3±2.5°C; P<.001), peaked at 29 minutes (27.9±2.2°C; P<.001) and remained below baseline values at 60 minutes (29.5±2.0°C; P<.001). Shear modulus increased by +11.5±11.8% after the second set (10 minutes; P=.011), peaked at 30 minutes (+34.7±42.6%; P<.001), and remained elevated until the end of the post-treatment period (+25.4±17.1%; P<.001). These findings provide evidence that cryotherapy induces an increase in muscle stiffness. This acute change in muscle mechanical properties may lower the amount of stretch that the muscle tissue is able to sustain without subsequent injury. This should be considered when using cryotherapy in athletic practice.