People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johansson, Jonas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024The need for nonuniform risk acceptability across climate change scenarioscitations
- 2021Improved quality of InSb-on-insulator microstructures by flash annealing into meltcitations
- 2021Surface energy driven miscibility gap suppression during nucleation of III-V ternary alloyscitations
- 2021Sintering Mechanism of Core@Shell Metal@Metal-Oxide Nanoparticlescitations
- 2021Aerotaxycitations
- 2020Pseudo-particle continuum modelling of nanowire growth in aerotaxy
- 2020Limits of III-V Nanowire Growth Based on Droplet Dynamicscitations
- 2018Self-assembled InN quantum dots on side facets of GaN nanowirescitations
- 2017Composition of Gold Alloy Seeded InGaAs Nanowires in the Nucleation Limited Regimecitations
- 2016Length Distributions of Nanowires Growing by Surface Diffusioncitations
- 2016Quaternary Chemical Potentials for Gold-Catalyzed Growth of Ternary InGaAs Nanowirescitations
- 2015Phase Transformation in Radially Merged Wurtzite GaAs Nanowires.citations
- 2015Size- and shape-dependent phase diagram of In–Sb nano-alloyscitations
- 2013Geometric model for metalorganic vapour phase epitaxy of dense nanowire arrayscitations
- 2012Combinatorial Approaches to Understanding Polytypism in III-V Nanowires.citations
- 2011Growth of straight InAs-on-GaAs nanowire heterostructurescitations
- 2011Parameter space mapping of InAs nanowire crystal structurecitations
- 2010Control of III-V nanowire crystal structure by growth parameter tuningcitations
- 2009Effects of Supersaturation on the Crystal Structure of Gold Seeded III-V Nanowirescitations
- 2008Effects of growth conditions on the crystal structure of gold-seeded GaP nanowirescitations
- 2008Focused ion beam fabrication of novel core-shell nanowire structurescitations
Places of action
Organizations | Location | People |
---|
article
The need for nonuniform risk acceptability across climate change scenarios
Abstract
<jats:title>Abstract</jats:title><jats:p>Climate change risk assessment studies focus on identifying and analyzing different risks considering several climate change scenarios and on evaluating the cost‐effectiveness of different adaptation measures. However, risk acceptability is often not reflected on in the context of climate change risk studies. Noting that the different climate change scenarios depict drastically contrasting images of the future in terms of population growth, economic development, and changes to life expectancy, this article uses risk acceptance criteria that are based on socioeconomic considerations to highlight the need for nonuniform risk acceptability across climate change scenarios. For this purpose, the optimum implied cost of averting a fatality derived based on the life quality index concept and the value of a quality‐adjusted life year derived based on the time principle of acceptable life risk are assessed in three different climate change scenarios for Sweden. Additionally, an illustrative example that assesses the acceptable probability of failure of a steel rod under axial tension in the different climate change scenarios is presented. It is shown that risk acceptance criteria can vary considerably across the different climate change scenarios (e.g., more than 190% variation in the acceptable probability of failure for Sweden in the considered example). This article demonstrates that the ability of societies to afford risk‐reducing measures may vary considerably across the different climate change scenarios. Hence, it can be concluded that (1) in the context of climate change risk assessments, risk acceptance criteria need to be developed to account for the different climate change scenarios, and (2) these criteria may vary considerably across the different climate change scenarios. Finally, relevant challenges and research needs are also provided.</jats:p>