Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Goossens, Willem

  • Google
  • 1
  • 5
  • 2

Ghent University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Mechanistic modeling reveals the importance of turgor-driven apoplastic water transport in wheat stem parenchyma during carbohydrate mobilization2citations

Places of action

Chart of shared publication
Martinez-Arias, Clara
1 / 1 shared
Haesaert, Geert
1 / 1 shared
Verbeke, Sarah
1 / 1 shared
Steppe, Kathy
1 / 8 shared
Padilla Diaz, Carmen Maria
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Martinez-Arias, Clara
  • Haesaert, Geert
  • Verbeke, Sarah
  • Steppe, Kathy
  • Padilla Diaz, Carmen Maria
OrganizationsLocationPeople

article

Mechanistic modeling reveals the importance of turgor-driven apoplastic water transport in wheat stem parenchyma during carbohydrate mobilization

  • Martinez-Arias, Clara
  • Goossens, Willem
  • Haesaert, Geert
  • Verbeke, Sarah
  • Steppe, Kathy
  • Padilla Diaz, Carmen Maria
Abstract

During stem elongation, wheat (Triticum aestivum) increases its stem carbohydrate content before anthesis as a reserve for grain filling. Hydraulic functioning during this mobilization process is not well understood, and contradictory results exist on the direct effect of drought on carbohydrate mobilization. In a dedicated experiment, wheat plants were subjected to drought stress during carbohydrate mobilization. Measurements, important to better understand stem physiology, showed some unexpected patterns that could not be explained by our current knowledge on water transport. Traditional water flow and storage models failed to properly describe the drought response in wheat stems during carbohydrate mobilization. To explain the measured patterns, hypotheses were formulated and integrated in a dedicated model for wheat. The new mechanistic model simulates two hypothetical water storage compartments: one where water is quickly exchanged with the xylem and one that contains the carbohydrate storage. Water exchange between these compartments is turgor-driven. The model was able to simulate the measured increase in stored carbohydrate concentrations with a decrease in water content and stem diameter. Calibration of the model showed the importance of turgor-driven apoplastic water flow during carbohydrate mobilization. This resulted in an increase in stem hydraulic capacitance, which became more important under drought stress.

Topics
  • impedance spectroscopy
  • grain
  • experiment