Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wozniakiewicz, Penelope

  • Google
  • 1
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Artificial weathering of an ordinary chondrite8citations

Places of action

Chart of shared publication
Ginneken, Matthias Van
1 / 1 shared
Ceukelaire, Marleen De
1 / 1 shared
Claeys, Philippe
1 / 6 shared
Goderis, Steven
1 / 3 shared
Woodland, Alan B.
1 / 1 shared
Debaille, Vinciane
1 / 4 shared
Leduc, Thierry
1 / 2 shared
Decrée, Sophie
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ginneken, Matthias Van
  • Ceukelaire, Marleen De
  • Claeys, Philippe
  • Goderis, Steven
  • Woodland, Alan B.
  • Debaille, Vinciane
  • Leduc, Thierry
  • Decrée, Sophie
OrganizationsLocationPeople

article

Artificial weathering of an ordinary chondrite

  • Ginneken, Matthias Van
  • Ceukelaire, Marleen De
  • Claeys, Philippe
  • Goderis, Steven
  • Woodland, Alan B.
  • Wozniakiewicz, Penelope
  • Debaille, Vinciane
  • Leduc, Thierry
  • Decrée, Sophie
Abstract

<p>Meteorites are prone to errestrial weathering not only after their fall on the Earth’s surface but also during storage in museum collections. To study the susceptibility of this material to weathering, weathering experiments were carried out on polished sections of the H5 chondrite Asuka 10177. The experiments consisted of four 100-days cycles during which temperature and humidity varied on a twelve hours basis. The first alteration cycle consisted of changing the temperature from 15 to 25 °C; the second cycle consisted of modifying both humidity and temperature from 35 to 45% and 15 to 25 °C, respectively; the third cycle consisted of varying the humidity level from 40 to 60%; and the fourth cycle maintained a fixed high humidity of 80%. Weathering products resulting from the experiments were identified and characterized using scanning electron microscopy–energy dispersive spectroscopy and Raman spectroscopy. Such products were not observed at the microscopic scale after the first cycle of alteration. Conversely, products typical of the corrosion of meteoritic FeNi metal were observed during scanning electron microscope surveys after all subsequent cycles. Important increases in the distribution of weathering products on the samples were observed after cycles 2 and 4 but not after cycle 3, suggesting that the combination of temperature and humidity fluctuations or high humidity (&gt;60%) alone is most detrimental to chondritic samples. Chemistry of the weathering products revealed a high degree of FeNi metal corrosion with a limited contribution of troilite corrosion. No clear evidence of mafic silicate alteration was observed after all cycles, suggesting that postretrieval alteration remains limited to FeNi metal and to a lesser extent to troilite.</p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • scanning electron microscopy
  • experiment
  • susceptibility
  • Raman spectroscopy