People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engels-Deutsch, Marc
Centre Hospitalier Régional de Metz-Thionville
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Experimental analysis of the influence of heat treatments on the flexibility of NiTi alloy for endodontic instruments manufacturingcitations
- 2021Finite element and experimental structural analysis of endodontic rotary file made of Cu-based single crystal SMA considering a micromechanical behavior modelcitations
- 2020Combined bending–torsion testing device for characterization of shape memory alloy endodontic filescitations
- 2017Experimental and numerical analysis of penetration/removal response of endodontic instrument made of single crystal Cu-based SMA: comparison with NiTi SMA instrumentscitations
- 2015Evaluation of a biofilm formation by Desulfovibrio fairfieldensis on titanium implants.citations
- 2013Finite Element Analysis of Superelastic Behaviour of Endodontic File in Cu-Based Single Crystal SMA
Places of action
Organizations | Location | People |
---|
article
Evaluation of a biofilm formation by Desulfovibrio fairfieldensis on titanium implants.
Abstract
The aim of this study was to assess the capabilities of Desulfovibrio fairfieldensis to colonize the grade 4 titanium coupons (modSLA) used in dental implants. The effect of ampicillin, which is known to be a poorly penetrating agent in the matrix biofilm, was also compared with planktonic and sessile cells. The modSLA colonization by bacteria in KNO3 (0.05 mol l(-1)) and culture media (DSM 63 and fetal bovine serum) was determined by direct cell counts and field emission electronic microscopy. The surface of titanium (Ti) coupons was characterized by scanning electron microscopy and by Raman spectroscopy. Cells, mainly located in surface pores of modSLA coupons, appeared to be wrapped in a polymeric-like structure. The initial apparent rates of adhesion varied from 3 × 10(6) to 30 × 10(6) cells cm(-2) h(-1), and a plateau was reached at 1 day, regardless of the incubation medium. No cells have significantly adhered to polished Ti, and a minority was found on massive Ti. Finally, cells trapped on the modSLA surface were not lysed by ampicillin contrary to planktonic cells. Des. fairfieldensis is therefore able to colonize the rough surface of modSLA implant through a physical trapping in the microporosity of the surface, where they can produce a biofilm-like structure to improve their resistance to ampicillin.Desulfovibrio fairfieldensis is one of the most relevant sulphate-reducing bacteria of the human oral cavity suspected to be involved in peri-implantitis and implant corrosion. This study demonstrates for the first time that Des. fairfieldensis is able to initiate the formation of a biofilm-like structure on the microstructured titanium coupons used in dental implants and that it improves its resistance to antibiotic treatment. It gives new insight to understand the capacity of this opportunistic pathogen to colonize implant surfaces and to resist to biocide treatments.