Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Styles, Iain

  • Google
  • 3
  • 4
  • 12

Queen's University Belfast

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Automated non-invasive cell counting in phase contrast microscopy with automated image analysis parameter selection12citations
  • 2015Automated optimisation of cell segmentation parameters in phase contrast using discrete mereotopologycitations
  • 2014Semi-automated cell counting in phase contrast images of epithelial monolayerscitations

Places of action

Chart of shared publication
Shelton, Richard
3 / 8 shared
Landini, Gabriel
3 / 15 shared
Flight, Rachel
3 / 3 shared
Milward, Michael
3 / 3 shared
Chart of publication period
2018
2015
2014

Co-Authors (by relevance)

  • Shelton, Richard
  • Landini, Gabriel
  • Flight, Rachel
  • Milward, Michael
OrganizationsLocationPeople

article

Automated non-invasive cell counting in phase contrast microscopy with automated image analysis parameter selection

  • Shelton, Richard
  • Styles, Iain
  • Landini, Gabriel
  • Flight, Rachel
  • Milward, Michael
Abstract

Cell counting is commonly used to determine proliferation rates in cell cultures and for adherent cells it is often a ‘destructive’ process requiring disruption of the cell monolayer resulting in the inability to follow cell growth longitudinally. This process is time consuming and utilises significant resource. In this study a relatively inexpensive, rapid and widely applicable phase contrast microscopy based technique has been developed that emulates the contrast changes taking place when bright field microscope images of epithelial cell cultures are defocused. Processing of the resulting images produces an image that can be segmented using a global threshold; the number of cells is then deduced from the number of segmented regions and these cell counts can be used to generate growth curves. The parameters of this method were tuned using the discrete mereotopological relations between ground truth and processed images. Cell count accuracy was improved using linear discriminant analysis to identify spurious noise regions for removal.<br/>The proposed cell counting technique was validated by comparing the results with a manual count of cells in images, and subsequently applied to generate growth curves for oral keratinocyte cultures supplemented with a range of concentrations of foetal calf serum. The approach developed has broad applicability and utility for researchers with standard laboratory imaging equipment.

Topics
  • impedance spectroscopy
  • phase
  • microscopy