Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Warren, Clare J.

  • Google
  • 2
  • 10
  • 71

The Open University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Allanite U–Pb dating places new constraints on the high‐pressure to high‐temperature evolution of the deep Himalayan crustcitations
  • 2018Replacement reactions and deformation by dissolution and precipitation processes in amphibolites71citations

Places of action

Chart of shared publication
Wood, Eleni
1 / 1 shared
Bidgood, Anna
1 / 1 shared
Halton, Alison
1 / 1 shared
Roberts, Nick M. W.
1 / 1 shared
Millar, Ian L.
1 / 1 shared
Hammond, Samantha J.
1 / 1 shared
Argles, Thomas
1 / 1 shared
Kunz, Barbara E.
1 / 1 shared
Menegon, Luca
1 / 3 shared
Giuntoli, Francesco
1 / 1 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Wood, Eleni
  • Bidgood, Anna
  • Halton, Alison
  • Roberts, Nick M. W.
  • Millar, Ian L.
  • Hammond, Samantha J.
  • Argles, Thomas
  • Kunz, Barbara E.
  • Menegon, Luca
  • Giuntoli, Francesco
OrganizationsLocationPeople

article

Replacement reactions and deformation by dissolution and precipitation processes in amphibolites

  • Menegon, Luca
  • Warren, Clare J.
  • Giuntoli, Francesco
Abstract

The deformation of the middle to lower crust in collisional settings occurs via deformation mechanisms that vary with rock composition, fluid content, pressure, and temperature. These mechanisms are responsible for the accommodation of large tectonic transport distances during nappe stacking and exhumation. Here, we show that fracturing and fluid flow triggered coupled dissolution–precipitation and dissolution–precipitation creep processes, which were responsible for the formation of a mylonitic microstructure in amphibolites. This fabric is developed over a crustal thickness >500 m in the Lower Seve Nappe (Scandinavian Caledonides). Amphibolites display a mylonitic foliation that wraps around albite porphyroclasts appearing dark in panchromatic cathodoluminescence (CL). The albite porphyroclasts were dissected and fragmented by fractures preferentially developed along the (001) cleavage planes and display lobate edges with embayments and peninsular features. Two albite/oligoclase generations, bright in CL, resorbed and overgrew the porphyroclasts, sealing the fractures. Electron backscattered diffraction shows that the two albite/oligoclase generations grew both pseudomorphically and topotaxially at the expense of the albite porphyroclasts and epitaxially around them. These two albite/oligoclase generations also grew as neoblasts elongated parallel to the mylonitic foliation. The amphibole crystals experienced a similar microstructural evolution, as evidenced by corroded ferrohornblende cores surrounded by ferrotschermakite rims that preserve the same crystallographic orientation of the cores. Misorientation maps highlight how misorientations in amphibole are related to displacement along fractures perpendicular to its c-axis. No crystal plasticity is observed in either mineral species. Plagioclase and amphibole display a crystallographic preferred orientation that is the result of topotaxial growth on parental grains and nucleation of new grains with a similar crystallographic orientation. Amphibole and ...

Topics
  • impedance spectroscopy
  • mineral
  • grain
  • dislocation
  • precipitation
  • plasticity
  • electron backscatter diffraction
  • deformation mechanism
  • crystal plasticity
  • creep