People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Finsterbusch, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes
- 2024Blacklight sintering of garnet-based composite cathodes
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes.citations
- 2024Elastic energy driven multivariant selection in martensites via quantum annealingcitations
- 2024Correlative characterization of plasma etching resistance of various aluminum garnetscitations
- 2024Correlative characterization of plasma etching resistance of various aluminum garnets
- 2024Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid‐State Batteries
- 2023Grain Boundary Characterization and Potential Percolation of the Solid Electrolyte LLZOcitations
- 2023Enabling metal substrates for garnet-based composite cathodes by laser sintering
- 2023Optimizing the Composite Cathode Microstructure in All‐Solid‐State Batteries by Structure‐Resolved Simulations
- 2023Oxide ceramic electrolytes for all-solid-state lithium batteries – cost-cutting cell design and environmental impactcitations
- 2022Rapid thermal processing of garnet-based composite cathodescitations
Places of action
Organizations | Location | People |
---|
article
Correlative characterization of plasma etching resistance of various aluminum garnets
Abstract
Plasma etching is a crucial step in semiconductor manufacturing. High cleanliness and wafer-to-wafer reproducibility in the etching chamber are essential in order to successfully achieve nanometer-sized integrated functions on the wafer. The trend toward the application of more aggressive plasma compositions leads to higher demands on the plasma resistance of the materials used in the etching chamber. Due to its excellent etch resistance, yttrium aluminum garnet Y3Al5O12 (YAG) is starting to replace established materials like SiO2 or Al2O3 in this kind of application. In this study, reactive spark plasma sintering (SPS) was used to manufacture highly dense YAG ceramics from the respective oxides. In addition, yttrium was replaced with heavier lanthanoids (Er, Lu), intending to investigate the role of the A-site cation in the garnet type structure on the plasma erosion behavior. The produced materials were exposed to fluorine-based etching plasmas mimicking the conditions in the semiconductor manufacturing apparatus and the erosion behavior was characterized by atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), and profilometry. The induced chemical gradient in the samples is limited to a few nanometers below the surface, which makes its characterization challenging. For advanced analysis, we developed a correlative characterization method combining SIMS and scanning TEM (STEM)–energy-dispersive spectroscopy (EDS) enabling us to examine the structural and chemical changes in the reaction layer locally resolved. In the case of lanthanoid aluminates, an altered reaction layer and reduced fluorine penetration compared to YAG were found. However, a correlation between the characteristics of the induced chemical gradient and the determined physical erosion rates was not evident.