Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wittmann, Sarah

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Synthesis and characterization of mullite‐type Sn(Cr1-xVx)BO4: Structural, vibrational, magnetic, and thermal propertiescitations

Places of action

Chart of shared publication
Murshed, Mohammad Mangir
1 / 7 shared
Gesing, Thorsten M.
1 / 12 shared
Pöttgen, Rainer
1 / 78 shared
Schumacher, Lars
1 / 3 shared
Koldemir, Aylin
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Murshed, Mohammad Mangir
  • Gesing, Thorsten M.
  • Pöttgen, Rainer
  • Schumacher, Lars
  • Koldemir, Aylin
OrganizationsLocationPeople

article

Synthesis and characterization of mullite‐type Sn(Cr1-xVx)BO4: Structural, vibrational, magnetic, and thermal properties

  • Wittmann, Sarah
  • Murshed, Mohammad Mangir
  • Gesing, Thorsten M.
  • Pöttgen, Rainer
  • Schumacher, Lars
  • Koldemir, Aylin
Abstract

<jats:title>Abstract</jats:title><jats:p>The susceptibility of either oxidation into Sn(IV) or disproportionation into Sn(IV) and Sn(0) limits the study of metal tin‐(II)‐borate ceramics. We report mullite‐type SnCrBO<jats:sub>4</jats:sub> and SnVBO<jats:sub>4</jats:sub> synthesized in sealed quartz tubes by conventional solid‐state method. X‐ray powder diffraction data Rietveld refinements confirm that both compounds are isostructural to Pb<jats:italic>M</jats:italic>BO<jats:sub>4</jats:sub> phases for <jats:italic>M</jats:italic> = Al, Ga, Cr, Mn, and Fe. The end‐members show a complete miscibility within the Sn(Cr<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>V<jats:italic><jats:sub>x</jats:sub></jats:italic>)BO<jats:sub>4</jats:sub> solid solution. Both the microstructural (average crystallite size, microstrain, and degree of crystallinity) and crystal structural (metric parameters, bond lengths, polyhedral volume, and polyhedral distortion) parameters are observed with respect to the compositional <jats:italic>x</jats:italic>‐value. The stereochemical activity of the 5 s<jats:sup>2</jats:sup> lone electron pairs of Sn<jats:sup>2+</jats:sup> cations has been measured by using the Wang–Liebau eccentricity parameter. The structural features are complemented by <jats:sup>119</jats:sup>Sn Mössbauer, Raman, and Fourier‐transformed infrared spectroscopy. The <jats:sup>119</jats:sup>Sn Mössbauer isomer shifts and the quadrupole splitting values confirm the SnO<jats:sub>4</jats:sub> coordination and an Sn(II) valence state. The electronic band gap has been calculated from the UV/Vis diffuse reflectance spectra, which slightly increases with successive decrease of the cationic radius from V to Cr. Temperature‐dependent inverse DC magnetic susceptibility suggests that SnCrBO<jats:sub>4</jats:sub> and SnVBO<jats:sub>4</jats:sub> are antiferromagnetic and ferromagnetic (FM) with a Néel temperature of 17.2(1) K and a Curie temperature of 29.8(1) K, respectively. Alike the end‐member SnVBO<jats:sub>4</jats:sub>, Sn(Cr<jats:sub>0.5</jats:sub>V<jats:sub>0.5</jats:sub>)BO<jats:sub>4</jats:sub> is also found to be a rare FM insulator. The thermal stability decreases with increasing vanadium content in the solid solution.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • phase
  • susceptibility
  • tin
  • crystallinity
  • vanadium
  • infrared spectroscopy
  • Curie temperature
  • mullite