Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stirbu, Radu S.

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Porosity effect on the functional properties and energy harvesting performance of Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics5citations

Places of action

Chart of shared publication
Stoian, George
1 / 2 shared
Ciomaga, Cristina Elena
1 / 4 shared
Lukacs, Vlad-Alexandru
1 / 1 shared
Dumitru, Ioan
1 / 1 shared
Tufescu, Florin M.
1 / 1 shared
Curecheriu, Lavinia-Petronela
1 / 8 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Stoian, George
  • Ciomaga, Cristina Elena
  • Lukacs, Vlad-Alexandru
  • Dumitru, Ioan
  • Tufescu, Florin M.
  • Curecheriu, Lavinia-Petronela
OrganizationsLocationPeople

article

Porosity effect on the functional properties and energy harvesting performance of Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics

  • Stoian, George
  • Ciomaga, Cristina Elena
  • Lukacs, Vlad-Alexandru
  • Stirbu, Radu S.
  • Dumitru, Ioan
  • Tufescu, Florin M.
  • Curecheriu, Lavinia-Petronela
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study, the effect of porosity on the structural and functional (dielectric, ferroelectric, nonlinear, and piezoelectric) properties in Ba<jats:sub>0.85</jats:sub>Ca<jats:sub>0.15</jats:sub>Ti<jats:sub>0.90</jats:sub>Zr<jats:sub>0.10</jats:sub>O<jats:sub>3</jats:sub> ceramics was investigated. Various levels of microporosity in the range of 3% to 31 vol.% have been produced using poly(methyl methacrylate) microspheres as sacrificial templates. The structural investigation indicates a phase coexistence, as expected for this composition at room temperature. The maximum permittivity decreases with increasing porosity, from around 7000 (ceramic with 3 vol.% porosity) down to 3500 (ceramic with 31 vol.% porosity), and the Curie temperature shifts from 47 to 67°C when increasing porosity, related to the possible porosity‐induced structural and internal stress modifications. An enhanced piezoelectric response was found in the Ba<jats:sub>0.85</jats:sub>Ca<jats:sub>0.15</jats:sub>Ti<jats:sub>0.90</jats:sub>Zr<jats:sub>0.10</jats:sub>O<jats:sub>3</jats:sub> ceramic with intermediate porosity around 18 vol.%, with the highest value of piezoelectric response of 470 pC/N and a figure of merit of 7.3 pm<jats:sup>2</jats:sup>/N. The optimum piezoelectric properties at the intermediate porosity level are related to the microstructural changes (pore shape and connectivity) and possible field‐induced structural modifications. The piezoelectric energy harvesting measurement results have shown the possibility of using Pb‐free porous ferroelectric materials in devices for energy harvesting applications.</jats:p>

Topics
  • porous
  • pore
  • phase
  • porosity
  • ceramic
  • Curie temperature