People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Becker, Simon
ETH Zurich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Effect of resting time on rheological properties of glass bead suspensions: Depletion and bridging force among particles
- 2023Effect of resting time on rheological properties of glass bead suspensions: Depletion and bridging force among particlescitations
- 2021Honeycomb structures in magnetic fieldscitations
- 2021Certifying the intrinsic character of a constitutive law for semicrystalline polymers: a probation test ; Certifier du caractère intrinsèque d'une loi constitutive pour les polymères semi-cristallins : un test de probation
- 2020Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensionscitations
Places of action
Organizations | Location | People |
---|
article
Effect of resting time on rheological properties of glass bead suspensions: Depletion and bridging force among particles
Abstract
<jats:title>Abstract</jats:title><jats:p>The effect of resting time on the rheological properties of cement suspensions is generally explained by early formed structure and overconsumption of polycarboxylate superplasticizers (PCEs). In this paper, we propose that the influence of resting time on the rheological properties is closely related to size variation of non‐absorbed PCE. To identify this, glass bead suspensions were prepared with various amounts of PCE and ionic solution, and their rheological properties were evaluated at various times. We found that the yield stress increases with time at higher PCE concentrations and higher ionic strength solutions. Adsorbed PCE during resting tends to bridge the particles rather than disperse them. In addition, it was found that hydrodynamic radius of PCE increased with resting time, and depletion forces resulting from non‐absorbed PCE size changes correlate well with the increased yield stress.</jats:p>