Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sharma, Saurabh Kumar

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Response of nonstoichiometric pyrochlore composition Nd1.8Zr2.2O7.1 to electronic excitations7citations

Places of action

Chart of shared publication
Grover, Vinita
1 / 2 shared
Shukla, Rakesh
1 / 2 shared
Kulriya, Pawan Kumar
1 / 1 shared
Mishra, Ambuj
1 / 2 shared
Hussain, Abid
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Grover, Vinita
  • Shukla, Rakesh
  • Kulriya, Pawan Kumar
  • Mishra, Ambuj
  • Hussain, Abid
OrganizationsLocationPeople

article

Response of nonstoichiometric pyrochlore composition Nd1.8Zr2.2O7.1 to electronic excitations

  • Grover, Vinita
  • Sharma, Saurabh Kumar
  • Shukla, Rakesh
  • Kulriya, Pawan Kumar
  • Mishra, Ambuj
  • Hussain, Abid
Abstract

<jats:title>Abstract</jats:title><jats:p>In response of swift heavy ion (100 MeV I<jats:sup>9+</jats:sup>) irradiation, the irradiation‐induced disordering in nonstoichiometric pyrochlore composition (Nd<jats:sub>1.8</jats:sub>Zr<jats:sub>2.2</jats:sub>O<jats:sub>7.1</jats:sub>) was compared to that of stoichiometric composition Nd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub>. Both compositions were prepared through auto gel‐combustion followed by sintering under the identical conditions. Systematic analysis of the compositions before and after irradiation was performed with X‐ray diffraction (XRD), Raman spectroscopy, and plane‐view high‐resolution transmission electron microscopy (HRTEM) techniques. Irradiation caused pyrochlore to amorphous phase transformation was observed in both compositions except the slower rate of amorphization in Nd<jats:sub>1.8</jats:sub>Zr<jats:sub>2.2</jats:sub>O<jats:sub>7.1</jats:sub>. The amorphization was achieved as a consequence of isolated disordered track overlapping at higher ion fluence with the estimated track diameter 2.73 ± 0.05 and 3.46 ± 0.30 nm for Nd<jats:sub>1.8</jats:sub>Zr<jats:sub>2.2</jats:sub>O<jats:sub>7.1</jats:sub> and Nd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub>, respectively, employing the framework of single‐ion impact model to XRD results. HRTEM micrographs also revealed the less prevalence of irradiation‐induced amorphization in Nd<jats:sub>1.8</jats:sub>Zr<jats:sub>2.2</jats:sub>O<jats:sub>7.1</jats:sub> with the observed irradiation‐induced modified track region composed of defect‐rich pyrochlore structure, anion‐deficient fluorite structure, and amorphous domains; with the diameter of 3.0 ± 1.0 nm and 5.0 ± 1.0 nm in Nd<jats:sub>1.8</jats:sub>Zr<jats:sub>2.2</jats:sub>O<jats:sub>7.1</jats:sub> and Nd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub>, respectively. The preexisting anion‐deficient fluorite structure in Nd<jats:sub>1.8</jats:sub>Zr<jats:sub>2.2</jats:sub>O<jats:sub>7.1</jats:sub> helps in its epitaxial growth as recovered structure from melted ion track during irradiation‐induced rapid cooling.</jats:p>

Topics
  • amorphous
  • phase
  • x-ray diffraction
  • laser emission spectroscopy
  • combustion
  • transmission electron microscopy
  • defect
  • Raman spectroscopy
  • sintering