Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Priyanka

  • Google
  • 5
  • 14
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Hybrid silver nanoparticles: Modes of synthesis and various biomedical applications5citations
  • 2023Structural, optical, microstructure, and giant dielectric behavior of parent, Cu and Sr doped La<sub>0.55</sub>Li<sub>0.35</sub>TiO<sub>3‐δ</sub>4citations
  • 2022Heavy metal detection in industrial waste water using Ficus Benjamina leaf extract mediated Ag nanoparticles1citations
  • 2022Strong Antimicrobial Activity of Silver Nanoparticles Obtained by the Green Synthesis in Viridibacillus sp. Extracts70citations
  • 2021Melt rheological behaviour of high-density polyethylene/montmorillonite nanocomposites7citations

Places of action

Chart of shared publication
Walski, Tomasz
1 / 1 shared
Kandalam, Saikrishna
1 / 1 shared
Maddiboyina, Balaji
1 / 1 shared
Singh, Shivang
1 / 1 shared
Bohara, Raghvendra
1 / 1 shared
Singh, Divyanshu
1 / 1 shared
Malhotra, Saransh
1 / 1 shared
Aggarwal, Nupur
1 / 2 shared
Anand, Gagan
1 / 2 shared
Panwar, Ranvir Singh
1 / 3 shared
Nagireddi, Srinu
1 / 1 shared
Sharma, Navdeep
1 / 3 shared
Sidhu, Harvinder Kaur
1 / 1 shared
Mijakovic, Ivan
1 / 7 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Walski, Tomasz
  • Kandalam, Saikrishna
  • Maddiboyina, Balaji
  • Singh, Shivang
  • Bohara, Raghvendra
  • Singh, Divyanshu
  • Malhotra, Saransh
  • Aggarwal, Nupur
  • Anand, Gagan
  • Panwar, Ranvir Singh
  • Nagireddi, Srinu
  • Sharma, Navdeep
  • Sidhu, Harvinder Kaur
  • Mijakovic, Ivan
OrganizationsLocationPeople

article

Structural, optical, microstructure, and giant dielectric behavior of parent, Cu and Sr doped La<sub>0.55</sub>Li<sub>0.35</sub>TiO<sub>3‐δ</sub>

  • Singh, Priyanka
  • Singh, Divyanshu
Abstract

<jats:title>Abstract</jats:title><jats:p>Optimization of energy storage performance in dielectric ceramics has been a focus in recent decades due to the benefits of high energy storage density, efficiency, and exceptional temperature stability. In this work, we report huge dielectric constant in La<jats:sub>0.55</jats:sub>Li<jats:sub>0.35</jats:sub>TiO<jats:sub>3‐δ</jats:sub> and sharp decrease in its value with the substitution of Sr and Cu at Ti position. These samples La<jats:sub>0.55</jats:sub>Li<jats:sub>0.35</jats:sub>TiO<jats:sub>3‐δ</jats:sub> (LLTO), La<jats:sub>0.55</jats:sub>Li<jats:sub>0.35</jats:sub>Ti<jats:sub>0.9</jats:sub>Cu<jats:sub>0.1</jats:sub>O<jats:sub>3‐δ</jats:sub> (LLTCO) and La<jats:sub>0.55</jats:sub>Li<jats:sub>0.35</jats:sub>Sr<jats:sub>0.1</jats:sub>Ti<jats:sub>0.9</jats:sub>O<jats:sub>3‐δ</jats:sub> (LLSTO) were prepared by solid state reaction method. The interfacial polarization of lithium ion aggregation close to the grain boundaries and the dipoles of Li ions in the sample are suggested to be the source of the enormous dielectric values. Parent composition (LLTO) shows highest dielectric constant value (6.29 × 10<jats:sup>5</jats:sup> at frequency 10 Hz, 7.30×10<jats:sup>4</jats:sup> at 1 kHz) recorded at room temperature while the lowest dielectric loss value (0.124) was observed for LLSTO at frequency 1 kHz. Structural characterization has been done using X‐ray diffraction (XRD) technique to investigate the crystal structure of the prepared compositions. The XRD patterns show the similar crystal structure for all the compositions with the parent composition LLTO. The optical band gap is calculated by Kulbeka Munk function and Tauc plot using UV–visible diffuse reflectance spectroscopy technique. The maximum band gap value (3.32 eV) is obtained for parent composition while doping of Cu and Sr at Ti site in La<jats:sub>0.55</jats:sub>Li<jats:sub>0.35</jats:sub>TiO<jats:sub>3‐δ</jats:sub> decreases the band gap value. Optical microscopy shows the micron size grains in these samples. Doping of Sr and Cu in perovskite structure of LLTO brings tunability in dielectric and optical properties.</jats:p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • grain
  • x-ray diffraction
  • dielectric constant
  • Lithium
  • interfacial
  • optical microscopy