Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khalid, Muhammad Waqas

  • Google
  • 2
  • 8
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Microwave hybrid and conventional sintering of Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub> multilayers fabricated by aqueous tape casting3citations
  • 2018Flexible corner cube retroreflector array for temperature and strain sensing12citations

Places of action

Chart of shared publication
Kim, Bum Sung
1 / 1 shared
Ali, Ammad
1 / 1 shared
Kim, Inyeong
1 / 1 shared
Park, Sangcheol
1 / 1 shared
Lee, Bin
1 / 1 shared
Hussain, Javid
1 / 3 shared
Yetisen, Ali K.
1 / 10 shared
Ahmed, Rajib
1 / 8 shared
Chart of publication period
2023
2018

Co-Authors (by relevance)

  • Kim, Bum Sung
  • Ali, Ammad
  • Kim, Inyeong
  • Park, Sangcheol
  • Lee, Bin
  • Hussain, Javid
  • Yetisen, Ali K.
  • Ahmed, Rajib
OrganizationsLocationPeople

article

Microwave hybrid and conventional sintering of Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub> multilayers fabricated by aqueous tape casting

  • Kim, Bum Sung
  • Ali, Ammad
  • Kim, Inyeong
  • Park, Sangcheol
  • Lee, Bin
  • Khalid, Muhammad Waqas
  • Hussain, Javid
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study, microwave hybrid sintering and conventional sintering of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐ and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/ZrO<jats:sub>2</jats:sub>‐laminated structures fabricated via aqueous tape casting were investigated. A combination of process temperature control rings and thermocouples was used to measure the sample surface temperatures more accurately. Microwave hybrid sintering caused higher densification and resulted in higher hardness in Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/ZrO<jats:sub>2</jats:sub> than in their conventionally sintered counterparts. The flexural strength of microwave‐hybrid‐sintered Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/ZrO<jats:sub>2</jats:sub> was 70.9% higher than that of the conventionally sintered composite, despite a lower sintering temperature. The fracture toughness of the microwave‐hybrid‐sintered Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> increased remarkably by 107.8% despite a decrease in the relative density when only 3 wt.% t‐ZrO<jats:sub>2</jats:sub> was added. The fracture toughness of the microwave‐hybrid‐sintered Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/ZrO<jats:sub>2</jats:sub> was significantly higher (247.7%) than that of the conventionally sintered composite. A higher particle coordination and voids elimination due to the tape casting and the lamination processes, the microwave effect, the stress‐induced martensitic phase transformation, and the grain refinement phenomenon are regarded as the main reasons for the mentioned outcomes.</jats:p>

Topics
  • density
  • surface
  • grain
  • phase
  • strength
  • composite
  • flexural strength
  • hardness
  • casting
  • void
  • fracture toughness
  • sintering
  • densification