People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lasgorceix, Marie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 20233D technology and antibacterial post-treatments: the process for the future manufacturing of bone substitutes?
- 2023Mg2+, Sr2+, Ag+, and Cu2+ co‐doped β‐tricalcium phosphate: Improved thermal stability and mechanical and biological propertiescitations
- 2023Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applicationscitations
- 2023Synthesis and Direct Ink Writing of doped β-tricalcium phosphate bioceramics for bone repair applications
- 2023Shaping of complex ceramic parts by several additive manufacturing processes
- 2023Surface structuring of β-TCP and transition to α-TCP induced by femtosecond laser processingcitations
- 2023Macroporous biphasic calcium phosphate materials for bone substitute applications
- 2023Cold Sintering Process for developing hydroxyapatite ceramic and polymer composite
- 2023Cold Sintering Process for developing hydroxyapatite ceramic and polymer composite
- 20233D printing of doped β-tricalcium phosphate bioceramics using robocasting
- 2023Combination of indirect stereolithography and gel casting methods to shape ceramic dental crowns
- 2022Binder jetting process with ceramic powders ; Binder jetting process with ceramic powders: Influence of powder properties and printing parameterscitations
- 2022Shaping of complex ceramic parts using stereolithography and gel casting
- 2022Manufacturing methods of bioceramic scaffolds
- 2022Shaping of ceramics by hybrid binder jetting
- 2022Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applicationscitations
- 2022Young Ceramists in the Spotlight
- 2022Shaping of ceramic by binder jetting
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2022Post-infiltration to improve the density of binder jetting ceramic partscitations
- 2021Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2021Influence of dopants on thermal stability and densification of β-tricalcium phosphate powderscitations
- 2021Development of calcium phosphate suspensions suitable for the stereolithography processcitations
- 2021Hybrid additive/subtractive manufacturing system to prepare dense and complicated ceramic parts
- 2020Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2020Hybrid additive/subtractive manufacturing system to prepare dense and complex shape ceramic parts
- 2019Pre-osteoblast cell colonization of porous silicon substituted hydroxyapatite bioceramics: Influence of microporosity and macropore designcitations
- 2019Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessmentcitations
- 2016Shaping by microstereolithography and sintering of macro–micro-porous silicon substituted hydroxyapatitecitations
- 2016Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) modelcitations
- 2014Shaping by microstereolithography and sintering of macro-micro-porous silicated hydroxyapatite ceramics and biological evaluation
Places of action
Organizations | Location | People |
---|
article
Mg2+, Sr2+, Ag+, and Cu2+ co‐doped β‐tricalcium phosphate: Improved thermal stability and mechanical and biological properties
Abstract
peer reviewed ; β-tricalcium phosphate (β-TCP, β-Ca3(PO4)2) is an attractive biomaterial for bone repair applications. However, its sintering and mechanical properties are limited by a problematic phase transition to α-TCP. Cationic doping of β-TCP is able to postpone the formation of α-TCP allowing higher sintering temperatures and better mechanical properties. The co-doping of β-TCP with Mg2+ and Sr2+ has already been studied in detail, but the addition of antibacterial cations (Ag+ and Cu2+) on the Mg–Sr β-TCP co-doped composition remains unexplored. Thus, two co-doped β-TCP compositions were realized by aqueous precipitation technique without any secondary phase and compared with undoped β-TCP: Mg–Sr (2.0–2.0 mol%) and Mg–Sr–Ag–Cu (2.0–2.0–0.1–0.1 mol%). Differential thermal analysis and dilatometry analyses showed a slight decrease of the β-TCP → α-TCP phase transition temperature for the Mg–Sr–Ag–Cu (2.0–2.0–0.1–0.1% mol) composition as compared to the Mg–Sr (2.0–2.0 mol%). However, both exhibited much higher transition temperatures than undoped β-TCP. The addition of Ag+ and Cu2+ slightly reduces the grain size after sintering compared to the Mg–Sr (2.0–2.0 mol%) and the undoped compositions. The co-doped compositions also exhibited improved mechanical properties, specifically a higher Vickers hardness and elastic modulus. Finally, cell proliferation assays showed that the presence of dopants, even Ag+ and Cu2+, does not affect the survival and proliferation of cells. Thus, the use of Mg2+, Sr2+, Ag+, and Cu2+ co-doped β-TCP could be very promising for biomedical applications due to the improvements of these dopants on the thermal stability and mechanical and biological properties.