Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yoshida, Satoshi

  • Google
  • 4
  • 16
  • 120

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Residual stress versus microstructural effects on the strength and toughness of phase‐separated PbO–B<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> glasses6citations
  • 2017The fracture toughness of inorganic glasses114citations
  • 2012Kompositions Afhængigheden af Mikroindentations Inducered Densificerede og Plastisk Deformerede Volumener i Simple Silikat Glas ; The Compositional Variation of Microindentation Induced Densified and Plastic Deformation Volumes in Simple Silicate Glassescitations
  • 2007Indentation-induced densification of soda-lime silicate glasscitations

Places of action

Chart of shared publication
Harako, Susumu
1 / 1 shared
Guimarães Dos Santos, Gisele
1 / 1 shared
Saijo, Yoshitaka
1 / 1 shared
Zanotto, Edgar Dutra
1 / 8 shared
Koike, Akio
1 / 3 shared
Peitl, Oscar
1 / 3 shared
Nagano, Mikio
1 / 1 shared
Sawamura, Shigeki
1 / 4 shared
Akiba, Shusaku
1 / 1 shared
Rouxel, Tanguy
2 / 71 shared
Hermansen, Christian
1 / 4 shared
Yamazaki, Hiroki
1 / 1 shared
Matsuoka, Jun
1 / 1 shared
Kato, Yoshinari
1 / 1 shared
Yue, Yuanzheng
1 / 86 shared
Sangleboeuf, Jean-Christophe
1 / 65 shared
Chart of publication period
2023
2017
2012
2007

Co-Authors (by relevance)

  • Harako, Susumu
  • Guimarães Dos Santos, Gisele
  • Saijo, Yoshitaka
  • Zanotto, Edgar Dutra
  • Koike, Akio
  • Peitl, Oscar
  • Nagano, Mikio
  • Sawamura, Shigeki
  • Akiba, Shusaku
  • Rouxel, Tanguy
  • Hermansen, Christian
  • Yamazaki, Hiroki
  • Matsuoka, Jun
  • Kato, Yoshinari
  • Yue, Yuanzheng
  • Sangleboeuf, Jean-Christophe
OrganizationsLocationPeople

article

Residual stress versus microstructural effects on the strength and toughness of phase‐separated PbO–B<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> glasses

  • Harako, Susumu
  • Guimarães Dos Santos, Gisele
  • Saijo, Yoshitaka
  • Zanotto, Edgar Dutra
  • Yoshida, Satoshi
  • Koike, Akio
  • Peitl, Oscar
  • Nagano, Mikio
  • Sawamura, Shigeki
  • Akiba, Shusaku
Abstract

<jats:title>Abstract</jats:title><jats:p>A few authors have reasonably proposed that liquid–liquid phase‐separated (LLPS) glasses could show improved fracture strength, <jats:italic>S<jats:sub>f</jats:sub></jats:italic>, and toughness, <jats:italic>K<jats:sub>Ic</jats:sub></jats:italic>, as the second phase could provide a barrier to crack propagation via deflection, bowing, trapping, or bridging. Due to the associated tensile or compressive residual stresses, the second phase could also act as a toughening or a weakening mechanism. In this work, we investigated five glasses of the PbO–B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> system spanning across the miscibility gap: Four of them undergo LLPS—three are binodal (two B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐rich and one PbO‐rich) and one is spinodal—and one does not show LLPS (composition outside the miscibility gap). Their compositions were designed in such a way that the amorphous particles are under compressive residual stresses in some and under tensile residual stresses in others. The following mechanical properties were determined: the Vickers hardness, ball on three balls (B3B) strength, and toughness, <jats:italic>K<jats:sub>Ic‐SEVNB</jats:sub></jats:italic> (single‐edge V‐notch beam [SEVNB]). The microstructures and compositions were analyzed using scanning electron microscopy with energy‐dispersive X‐ray spectrometry. The spinodal glass showed, by far, the best mechanical properties. Its <jats:italic>K<jats:sub>Ic‐SEVNB</jats:sub></jats:italic> = 1.6 ± 0.1 MPa m<jats:sup>1/2</jats:sup>, which embodies an increase of almost 50% over the B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐rich binodal composition, and 90% considering the PbO‐rich binodal composition. Moreover, its fracture strength, <jats:italic>S<jats:sub>f</jats:sub></jats:italic> = 166 ± 7 MPa, is one of the highest ones ever reported for an LLPS glass. Fracture analyses evidenced that the spinodal composition exhibited the lowest net stress at the fracture point. Moreover, calculations indicate that the internal residual stress level is the lowest in the spinodal glass. The overall results indicate that the <jats:italic>microstructural effect</jats:italic> of the spinodal glass is the most significant factor for its superior mechanical properties. This work corroborates the idea that LLPS provides a feasible and stimulating solution to improve the mechanical properties of glasses.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • scanning electron microscopy
  • glass
  • glass
  • crack
  • strength
  • hardness
  • spectrometry
  • liquid phase
  • ion chromatography