Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Graca, Vanessa

  • Google
  • 1
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Toward improved chemical stability of yttrium‐doped barium cerate by the introduction of nickel oxide8citations

Places of action

Chart of shared publication
Holz, Laura I. V.
1 / 2 shared
Mikhalev, Sergey M.
1 / 4 shared
Loureiro, Francisco
1 / 2 shared
Fagg, Duncan P.
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Holz, Laura I. V.
  • Mikhalev, Sergey M.
  • Loureiro, Francisco
  • Fagg, Duncan P.
OrganizationsLocationPeople

article

Toward improved chemical stability of yttrium‐doped barium cerate by the introduction of nickel oxide

  • Holz, Laura I. V.
  • Mikhalev, Sergey M.
  • Graca, Vanessa
  • Loureiro, Francisco
  • Fagg, Duncan P.
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, we demonstrate that the introduction of a small amount of NiO (1.8 wt%) to the proton‐conducting perovskite yttrium‐doped barium (BaCe<jats:sub>0.9</jats:sub>Y<jats:sub>0.1</jats:sub>O<jats:sub>3−</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic>, BCY10) can radically improve its chemical stability, even in conditions of very high carbon dioxide partial pressure (<jats:italic>p</jats:italic><jats:sub>O2</jats:sub> = 1 atm) and wet conditions (<jats:italic>p</jats:italic><jats:sub>H2O</jats:sub> = 0.033 atm). To this end, we test sets of unmodified and NiO‐modified BCY samples sintered at different temperatures to achieve different grain sizes. Long‐term stability measurements up to 720 h at 400°C, under these conditions, reveal a noticeable drop in conductivity for the unmodified samples, scaling with decreasing grain size, due to the formation of barium carbonate. Conversely, the NiO‐modified samples show no apparent degradation, with a stable conductivity performance retained over 720 h, irrespective of grain sizes. We tentatively attribute this unusual behavior to the increased chemical resistance of the perovskite phase due to an increase in the <jats:italic>a</jats:italic><jats:sub>NiO</jats:sub>/<jats:italic>a</jats:italic><jats:sub>BaO</jats:sub> activity ratio at the bulk surfaces, which can prevent surface attack. Such an effect is supported by an observed increase in the <jats:italic>Schottky</jats:italic> barrier height, revealing a change in the specific grain boundary properties of the NiO‐modified samples. Conductivity measurements in wet O<jats:sub>2</jats:sub> (<jats:italic>p</jats:italic><jats:sub>H2O</jats:sub> = 0.033 atm) underscore that both the bulk and grain boundary terms of the conductivity of the NiO‐modified sample, sintered at 1350°C, are competitive with the unmodified BCY sample, sintered at 1450°C, even at temperatures as low as 400°C. The results here reported, thus, unlock a different perspective for these transition metal additives, to improve the chemical resistance of proton‐conducting ceramics perovskites.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • Carbon
  • grain
  • nickel
  • grain size
  • phase
  • grain boundary
  • chemical stability
  • Yttrium
  • chemical resistance
  • Barium