People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bera, Anup Kumar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Significantly increased magnetic anisotropy in Co nano-columnar multilayer structure via a unique sequential oblique-normal deposition approach
- 2023Enhancing the limit of uniaxial magnetic anisotropy induced by ion beam erosioncitations
- 2022Morphology induced large magnetic anisotropy in obliquely grown nanostructured thin film on nanopatterned substratecitations
- 2022“High Na+ conducting Na3Zr2Si2PO12/Na2Si2O5 composites as solid electrolytes for Na+ batteries”citations
Places of action
Organizations | Location | People |
---|
article
“High Na+ conducting Na3Zr2Si2PO12/Na2Si2O5 composites as solid electrolytes for Na+ batteries”
Abstract
<jats:title>Abstract</jats:title><jats:p>Sodium superionic conductor Na<jats:sub>3</jats:sub>Zr<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>PO<jats:sub>12</jats:sub> (NZSP) is a promising material as a solid electrolyte for sodium‐ion batteries. The highest conductivity of ∼1.0 mS/cm at room temperature (RT) was reported for the compound with a Na content of approximately 3.3 per formula unit (f. u.) and when the material is synthesized with a final sintering temperature ≥1220°C. Herein, we propose a new synthesis method to enhance the conductivity of the NZSP by liquid‐phase sintering with the optimum amount of additive of amorphous‐Na<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>. In this regard, a series of composite materials were prepared by mixing Na<jats:sub>3</jats:sub>Zr<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>PO<jats:sub>12</jats:sub> with amorphous‐Na<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> (NZSP/NS‐<jats:italic>x</jats:italic> wt.%; with <jats:italic>x </jats:italic>= 0.0, 2.5, 5.0, 7.5, 10.0) and sintering at a lower temperature of 1150°C. Enhanced conductivity of 1.7 mS/cm at RT has been achieved for the Na<jats:sub>3</jats:sub>Zr<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>PO<jats:sub>12</jats:sub>/Na<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>‐5.0 wt.% (NZSP/NS‐5.0) composite. The effects of additives on the NZSP phase formation, microstructure, and ion conductivity have been investigated by XRD, MAS NMR, SEM, and impedance spectroscopy. Our study demonstrates that the higher conductivity of the NZSP/NS‐5.0 composite is caused by the combined effect of increased Na content in the NZSP phase (by diffusion of Na<jats:sup>+</jats:sup> ions from the liquid phase of NS to bare NZSP phase), higher density, and microstructures with lesser pores.</jats:p>