Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maksymuk, Mykola

  • Google
  • 1
  • 4
  • 15

Vasyl Stefanyk Precarpathian National University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Feasibility of high performance in <i>p</i>‐type Ge<sub>1−</sub><i><sub>x</sub></i>Bi<i><sub>x</sub></i>Te materials for thermoelectric modules15citations

Places of action

Chart of shared publication
Horichok, Ihor
1 / 1 shared
Mori, Takao
1 / 39 shared
Muchtar, Ahmad Rifqi
1 / 1 shared
Dashevsky, Zinovi
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Horichok, Ihor
  • Mori, Takao
  • Muchtar, Ahmad Rifqi
  • Dashevsky, Zinovi
OrganizationsLocationPeople

article

Feasibility of high performance in <i>p</i>‐type Ge<sub>1−</sub><i><sub>x</sub></i>Bi<i><sub>x</sub></i>Te materials for thermoelectric modules

  • Horichok, Ihor
  • Mori, Takao
  • Muchtar, Ahmad Rifqi
  • Dashevsky, Zinovi
  • Maksymuk, Mykola
Abstract

<jats:title>Abstract</jats:title><jats:p>GeTe is a promising candidate for the fabrication of high‐temperature segments for <jats:italic>p</jats:italic>‐type thermoelectric (TE) legs. The main restriction for the widespread use of this material in TE devices is high carrier concentration (up to ∼ 10<jats:sup>21</jats:sup> cm<jats:sup>−3</jats:sup>), which causes the low Seebeck coefficient and high electronic component of thermal conductivity. In this work, the band structure diagram and phase equilibria data have been effectively used to attune the carrier concentration and to obtain the high TE performance. The Ge<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Bi<jats:italic><jats:sub>x</jats:sub></jats:italic>Te (<jats:italic>x</jats:italic> = 0.04) material prepared by the Spark plasma sintering (SPS) technique demonstrates a high power factor accompanied by moderate thermal conductivity. As a result, a significantly higher dimensionless TE figure of merit <jats:italic>ZT</jats:italic> = 2.0 has been obtained at ∼ 800 K. Moreover, we are the first to propose that application of the developed Ge<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Bi<jats:italic><jats:sub>x</jats:sub></jats:italic>Te (<jats:italic>x</jats:italic> = 0.04) material in the TE unicouple should be accompanied by SnTe and CoGe<jats:sub>2</jats:sub> transition layers. Only such a unique solution for the TE unicouple makes it possible to prevent the negative effects of high contact resistance and chemical diffusion between the segments at high temperatures.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • thermal conductivity
  • band structure
  • sintering