Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Strnad, Nicholas

  • Google
  • 2
  • 10
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Plasma enhanced atomic layer deposition of textured aluminum nitride on platinized substrates for MEMS12citations
  • 2021Growth of thin film ferroelectric PZT, PHT, and antiferroelectric PHO from atomic layer deposition precursors19citations

Places of action

Chart of shared publication
Benoit, Robert R.
1 / 1 shared
Rayner, Gilbert B.
1 / 1 shared
Shallenberger, Jeffrey
1 / 4 shared
Pulskamp, Jeffrey S.
2 / 3 shared
Larrabee, Thomas J.
1 / 1 shared
Rudy, Ryan Q.
1 / 1 shared
Fox, Glen R.
1 / 1 shared
Hanrahan, Brendan M.
1 / 1 shared
Phaneuf, Raymond J.
1 / 3 shared
Polcawich, Ronald G.
1 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Benoit, Robert R.
  • Rayner, Gilbert B.
  • Shallenberger, Jeffrey
  • Pulskamp, Jeffrey S.
  • Larrabee, Thomas J.
  • Rudy, Ryan Q.
  • Fox, Glen R.
  • Hanrahan, Brendan M.
  • Phaneuf, Raymond J.
  • Polcawich, Ronald G.
OrganizationsLocationPeople

article

Growth of thin film ferroelectric PZT, PHT, and antiferroelectric PHO from atomic layer deposition precursors

  • Hanrahan, Brendan M.
  • Phaneuf, Raymond J.
  • Pulskamp, Jeffrey S.
  • Strnad, Nicholas
  • Polcawich, Ronald G.
Abstract

<jats:title>Abstract</jats:title><jats:p>We present a conformal method of growing ferroelectric lead hafnate‐titanate (PbHf<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>O<jats:sub>3</jats:sub>, PHT) and lead zirconate‐titanate (PbZr<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>O<jats:sub>3</jats:sub>, PZT) using atomic layer deposition (ALD) precursors. The 4+ cation precursors consist of tetrakis dimethylamino titanium (TDMAT), tetrakis dimethylamino zirconium (TDMAZ) and tetrakis dimethyl amino hafnium (TDMAH) for Ti, Zr, and Hf, respectively. The Pb (2+) precursor was Lead bis(3‐N,N‐dimethyl‐2‐methyl‐2‐propanoxide) [Pb(DMAMP)<jats:sub>2</jats:sub>]. PZT was limited to lead titanate (PTO)‐rich compositions, where <jats:italic>x</jats:italic> &lt;0.25 for PbZr<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>O<jats:sub>3</jats:sub>, and exhibited a remnant polarization of 26‐27 µC/cm<jats:sup>2</jats:sup> with a coercive field between 150 and 170 kV/cm. The 3D‐structure coating capability of PZT was demonstrated by deposition on micromachined trench sidewalls 45 µm deep. We fabricated Microelectromechanical systems (MEMS) cantilever arrays with PZT thin films grown using the present method and demonstrated piezoelectric actuation. Alternatively, PHT was deposited with Ti and Hf compositions within ±1 at.% of the morphotropic phase boundary (MPB). The PHT exhibited a remanent polarization of 7.0‐8.7 µC/cm<jats:sup>2</jats:sup> with a coercive field between 84‐100 kV/cm. We applied the same Pb and Hf precursors from the PHT process to grow antiferroelectric lead‐hafnate (PHO), which showed the characteristic electric field‐induced ferroelectric phase transition at approximately ±280 kV/cm and a maximum polarization of approximately ±32.8 µC/cm<jats:sup>2</jats:sup>.</jats:p>

Topics
  • phase
  • thin film
  • zirconium
  • phase transition
  • titanium
  • hafnium
  • atomic layer deposition
  • phase boundary