Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jiang, Xijie

  • Google
  • 2
  • 19
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020High temperature creep-mediated functionality in polycrystalline barium titanate30citations
  • 2017Stress-induced phase transition in lead-free relaxor ferroelectric composites121citations

Places of action

Chart of shared publication
Lauterbach, Stefan
1 / 17 shared
Porz, Lukas
1 / 13 shared
Khatua, Dipak Kumar
1 / 1 shared
Ranjan, Rajeev
1 / 12 shared
Frömling, Till
1 / 5 shared
Ren, Pengrong
1 / 1 shared
Rödel, Jürgen
2 / 20 shared
Dietz, Christian
2 / 6 shared
Koruza, Jurij
2 / 50 shared
Kleebe, Hans Joachim
1 / 11 shared
Höfling, Marion
1 / 7 shared
Buntkowsky, Gerd
1 / 9 shared
Lalitha, K. V.
1 / 6 shared
Zhang, Shan Tao
1 / 1 shared
Stark, Robert W.
1 / 7 shared
Groszewicz, Pedro B.
1 / 5 shared
Chen, Jun
1 / 19 shared
Liu, Na
1 / 2 shared
Riemer, Lukas M.
1 / 1 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Lauterbach, Stefan
  • Porz, Lukas
  • Khatua, Dipak Kumar
  • Ranjan, Rajeev
  • Frömling, Till
  • Ren, Pengrong
  • Rödel, Jürgen
  • Dietz, Christian
  • Koruza, Jurij
  • Kleebe, Hans Joachim
  • Höfling, Marion
  • Buntkowsky, Gerd
  • Lalitha, K. V.
  • Zhang, Shan Tao
  • Stark, Robert W.
  • Groszewicz, Pedro B.
  • Chen, Jun
  • Liu, Na
  • Riemer, Lukas M.
OrganizationsLocationPeople

article

High temperature creep-mediated functionality in polycrystalline barium titanate

  • Lauterbach, Stefan
  • Porz, Lukas
  • Khatua, Dipak Kumar
  • Ranjan, Rajeev
  • Frömling, Till
  • Ren, Pengrong
  • Rödel, Jürgen
  • Dietz, Christian
  • Koruza, Jurij
  • Jiang, Xijie
  • Kleebe, Hans Joachim
  • Höfling, Marion
Abstract

<p>Dislocations in oxides can be described as charged line defects and means for one-dimensional doping, which can tune electrical and thermal properties. Furthermore, theoretically it was shown that dislocations can pin ferroelectric domain walls. Broader application of this concept hinges on the development of a methodology to avail this approach to polycrystalline ceramics. To this end, we use different creep mechanisms as a method to introduce multidimensional defects and quantify structural changes. A deformation map for fine-grained barium titanate is provided and the influences of the defects and creep regimes are correlated in this first study to modifications of electrical conductivity, dielectric, ferroelectric, and piezoelectric properties. A plastic deformation of 1.29% resulted in an increase in the Curie temperature by 5°C and a decrease in electromechanical strain by 30%, pointing toward electromechanical hardening by dislocations.</p>

Topics
  • impedance spectroscopy
  • polymer
  • dislocation
  • ceramic
  • electrical conductivity
  • creep
  • one-dimensional
  • Curie temperature
  • Barium