People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frömling, Till
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Microstructure and conductivity of blacklight‐sintered TiO<sub>2</sub>, YSZ, and Li<sub>0.33</sub>La<sub>0.57</sub>TiO<sub>3</sub>citations
- 2022Enhanced photoconductivity at dislocations in SrTiO 3citations
- 2021Piezotronic effect at Schottky barrier of a metal-ZnO single crystal interface
- 2020High temperature creep-mediated functionality in polycrystalline barium titanatecitations
- 2017Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytescitations
Places of action
Organizations | Location | People |
---|
article
High temperature creep-mediated functionality in polycrystalline barium titanate
Abstract
<p>Dislocations in oxides can be described as charged line defects and means for one-dimensional doping, which can tune electrical and thermal properties. Furthermore, theoretically it was shown that dislocations can pin ferroelectric domain walls. Broader application of this concept hinges on the development of a methodology to avail this approach to polycrystalline ceramics. To this end, we use different creep mechanisms as a method to introduce multidimensional defects and quantify structural changes. A deformation map for fine-grained barium titanate is provided and the influences of the defects and creep regimes are correlated in this first study to modifications of electrical conductivity, dielectric, ferroelectric, and piezoelectric properties. A plastic deformation of 1.29% resulted in an increase in the Curie temperature by 5°C and a decrease in electromechanical strain by 30%, pointing toward electromechanical hardening by dislocations.</p>