People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Foss, Morten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Comment on “Which fraction of stone wool fibre surface remains uncoated by binder? A detailed analysis by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy” by Hirth et al., 2021, RSC Adv., 11, 39545, DOI: 10.1039/d1ra06251dcitations
- 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applicationscitations
- 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applications.citations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2022The dissolution of stone wool fibers with sugar-based binder and oil in different synthetic lung fluidscitations
- 2021Post-treatments of polydopamine coatings influence cellular responsecitations
- 2018A comparative in vivo study of strontium-functionalized and SLActive (TM) implant surfaces in early bone healingcitations
- 2017Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash-like compositionscitations
- 2015Response of MG63 osteoblast-like cells to ordered nanotopographies fabricated using colloidal self-assembly and glancing angle depositioncitations
- 2015Modulation of Human Mesenchymal Stem Cell Behavior on Ordered Tantalum Nanotopographies Fabricated Using Colloidal Lithography and Glancing Angle Depositioncitations
- 2015Low-aspect ratio nanopatterns on bioinert alumina influence the response and morphology of osteoblast-like cellscitations
- 2012Temperature-induced ultradense PEG polyelectrolyte surface grafting provides effective long-term bioresistance against mammalian cells, serum, and whole bloodcitations
- 2011Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithographycitations
- 2010Synthesis of functional nanomaterials via colloidal mask templating and glancing angle deposition (GLAD)”
- 2009Polycaprolactone nanomesh cultured with hMSC evaluated by synchrotron tomography
- 2009The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralizationcitations
Places of action
Organizations | Location | People |
---|
article
Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash-like compositions
Abstract
Supplementary cementitious materials (SCM) have been used by the cement industry for decades to partly replace the portland cement fraction of concrete binders. This is particularly important today in addressing CO2 emissions from the cement manufacturing process. However, defining the reactivity of these mainly aluminosilicate-based materials and their influence on portland cement hydration chemistry has challenged the research community and has limited SCM replacement levels in cementitious binders. In this study, aluminosilicate glasses as models for blast furnace slag and fly-ash systems were synthesized and exposed to different activator solutions in a continuously stirred closed system reactor for a period up to 3 hours. Solution compositions were measured from the very first minutes of dissolution and correlated with results from complementary solid surface analysis. Initial Ca concentration maxima in the first 30 minutes of exposure to the activating solution was a common feature in most dissolution profiles with a subsequent rapid decline attributable to Ca-reincorporation on the reacting surface. Surface-specific analysis confirmed Ca and Al enrichment at the surface, suggesting the formation of a Ca-modified aluminosilicate layer, supporting a dissolution-reprecipitation mechanism for SCM reactivity. Differing chemistries are thought to be responsible for the Ca and Al reintegration on the reacting surface depending on the pH of the solution; near-neutral conditions favor Ca-readsorption and surface condensation reactions, whereas alkaline solutions favor Ca-reintegration via covalently bound phases.