Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Allen, Jan L.

  • Google
  • 1
  • 4
  • 159

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016The Effect of Relative Density on the Mechanical Properties of Hot‐Pressed Cubic <scp><scp>Li</scp></scp><sub>7</sub><scp><scp>La</scp></scp><sub>3</sub><scp><scp>Zr</scp></scp><sub>2</sub><scp><scp>O</scp></scp><sub>12</sub>159citations

Places of action

Chart of shared publication
Choe, Heeman
1 / 4 shared
Wolfenstine, Jeff
1 / 2 shared
Sakamoto, Jeff
1 / 9 shared
Jo, Hyungyung
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Choe, Heeman
  • Wolfenstine, Jeff
  • Sakamoto, Jeff
  • Jo, Hyungyung
OrganizationsLocationPeople

article

The Effect of Relative Density on the Mechanical Properties of Hot‐Pressed Cubic <scp><scp>Li</scp></scp><sub>7</sub><scp><scp>La</scp></scp><sub>3</sub><scp><scp>Zr</scp></scp><sub>2</sub><scp><scp>O</scp></scp><sub>12</sub>

  • Choe, Heeman
  • Wolfenstine, Jeff
  • Sakamoto, Jeff
  • Jo, Hyungyung
  • Allen, Jan L.
Abstract

<jats:p>The effect of relative density on the hardness and fracture toughness of Al‐substituted cubic garnet <jats:styled-content style="fixed-case"><jats:roman>Li</jats:roman></jats:styled-content><jats:sub>6.19</jats:sub><jats:styled-content style="fixed-case"><jats:roman>Al</jats:roman></jats:styled-content><jats:sub>0.27</jats:sub><jats:styled-content style="fixed-case"><jats:roman>La</jats:roman></jats:styled-content><jats:sub>3</jats:sub><jats:styled-content style="fixed-case"><jats:roman>Zr</jats:roman></jats:styled-content><jats:sub>2</jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content><jats:sub>12</jats:sub> (<jats:styled-content style="fixed-case">LLZO</jats:styled-content>) was investigated. Polycrystalline <jats:styled-content style="fixed-case">LLZO</jats:styled-content> was made using solid‐state synthesis and hot‐pressing. The relative density was controlled by varying the densification time at fixed temperature (1050°C) and pressure (62 <jats:styled-content style="fixed-case">MP</jats:styled-content>a). After hot‐pressing, the average grain size varied from approximately 2.7–3.7 μm for the 85% and 98% relative density samples, respectively. Examination of fracture surfaces revealed a transition from inter‐ to intragranular fracture as the relative density increased. The Vickers hardness increased with relative density up to 96%, above which the hardness was constant. At 98% relative density, the Vickers hardness was equal to the hardness measured by nanoindentation 9.1 <jats:styled-content style="fixed-case">GP</jats:styled-content>a, which is estimated as the single‐crystal hardness value. An inverse correlation between relative density and fracture toughness was observed. The fracture toughness increased linearly from 0.97 to 2.37 <jats:styled-content style="fixed-case">MP</jats:styled-content>a√m for the 98% and 85% relative density samples, respectively. It is suggested that crack deflection along grain boundaries can explain the increase in fracture toughness with decreasing relative density. It was also observed that the total ionic conductivity increased from 0.0094 to 0.34 <jats:styled-content style="fixed-case">mS</jats:styled-content>/cm for the 85%–98% relative density samples, respectively. The results of this study suggest that the microstructure of <jats:styled-content style="fixed-case">LLZO</jats:styled-content> must be optimized to maximize mechanical integrity and ionic conductivity.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • crack
  • mass spectrometry
  • hardness
  • nanoindentation
  • fracture toughness
  • densification