People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Molla, Tesfaye Tadesse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2015Modeling constrained sintering of bi-layered tubular structurescitations
- 2014Modeling Macroscopic Shape Distortions during Sintering of Multi-layers
- 2013Modeling sintering of multilayers under influence of gravitycitations
- 2013Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firingcitations
- 2012Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body
- 2012Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures
Places of action
Organizations | Location | People |
---|
article
Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing
Abstract
Camber evolution and stress development during co-firing of asymmetric bilayer laminates, consisting of porous Ce0.9Gd0.1O1.95 gadolinium-doped cerium oxide (CGO) and La0.85Sr0.15MnO3<br/>lanthanum strontium manganate (LSM)-CGO were investigated. Individual layer shrinkage was measured by optical dilatometer, and the uniaxial viscosities were determined as a function of layer density using a vertical sintering approach. The camber evolution in the bilayer laminates was recorded in situ during co-firing and it was found to correspond well with the one predicted by the theoretical model. The estimated sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic layers.