People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bjørk, Rasmus
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2018A topology optimized switchable permanent magnet systemcitations
- 2015Optimization of the Mechanical and Electrical Performance of a Thermoelectric Modulecitations
- 2015Modeling constrained sintering of bi-layered tubular structurescitations
- 2015Modeling constrained sintering of bi-layered tubular structurescitations
- 2014In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopycitations
- 2014Modeling Macroscopic Shape Distortions during Sintering of Multi-layers
- 2013Modeling sintering of multilayers under influence of gravitycitations
- 2013Modeling sintering of multilayers under influence of gravitycitations
- 2013The effect of particle size distributions on the microstructural evolution during sinteringcitations
- 2012Development and Experimental Results from a 1 kW Prototype AMR
- 2011A monolithic perovskite structure for use as a magnetic regeneratorcitations
Places of action
Organizations | Location | People |
---|
article
The effect of particle size distributions on the microstructural evolution during sintering
Abstract
Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle radii and a range of standard deviations, and log-normal PSDs with fixed mode and a range of skewness values were studied. Densification rate and final relative density were found to be inversely proportional to initial PSD width. Grain growth was faster during the early stages of sintering for broad PSDs, but the final grain sizes were smaller. These behaviors are explained by the smallest grains in the broader PSDs being consumed very quickly by larger neighboring grains. The elimination of the small grains reduces both the total number of necks and the neck area between particles, which in turn reduces the regions where vacancies can be annihilated, leading to slower densification rates. The loss of neck area causes grain growth by surface diffusion to become the dominant microstructural evolution mechanism, leading to poor densification. Finally, pore size was shown to increase with the width of PSDs, which also contributes to the lower densification rates.