People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sauro, Salvatore
Universidad Cardenal Herrera CEU
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Experimental Composite Resin with Myristyltrimethylammonium Bromide (MYTAB) and Alpha-Tricalcium Phosphate (α-TCP): Antibacterial and Remineralizing Effect.citations
- 2023Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphatescitations
- 2022Physical-chemical and microbiological performances of graphene-doped PMMA for CAD/CAM applications before and after accelerated aging protocolscitations
- 2022RoBDEMAT: A risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviewscitations
- 2021Commercially available ion-releasing dental materials and cavitated carious lesionscitations
- 2020Effects of Surface Treatments of Glass Fiber-Reinforced Post on Bond Strength to Root Dentine: A Systematic Review
- 2020Physicochemical and Antibacterial Properties of Novel, Premixed Calcium Silicate-Based Sealer Compared to Powder–Liquid Bioceramic Sealercitations
- 2020In vitro bonding performance of modern self-adhesive resin cements and conventional resin-modified glass ionomer cements to prosthetic substratescitations
- 2019Boron Nitride Nanotubes as Filler for Resin-Based Dental Sealantscitations
- 2019Co-blend application mode of bulk fill composite resincitations
- 2016Modifications in Glass Ionomer Cements:Nano-Sized Fillers and Bioactive Nanoceramicscitations
- 2013Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfacescitations
- 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cementcitations
- 2011Porosity, Micro-Hardness and Morphology of White and Gray Portland Cements in Relation to Their Potential in the Development of New Dental Filling Materialscitations
- 2011Porosity, Micro-Hardness and Morphology of White and Gray Portland Cements in Relation to Their Potential in the Development of New Dental Filling Materialscitations
- 2006Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resinscitations
Places of action
Organizations | Location | People |
---|
article
Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement
Abstract
The aim of this study was to test the microtensile bond strength (lTBS), after 6 months of storage in PBS, of a resin-modified glass ionomer cement (RMGIC) bonded to dentine pretreated with Bioglass 45S5 (BAG) using various etching and airabrasion techniques. The RMGIC (GC Fuji II LC) was applied onto differently treated dentine surfaces followed by light curing for 30s. The specimens were cut into matchsticks with cross-sectional areas of 0.9 mm 2. The lTBS of the specimens was measured after 24 h or 6 months of storage in PBS and the results were statistically analysed using two-way anova and the Student-Newman-Keuls test (a = 0.05). Further RMCGIC-bonded dentine specimens were used for interfacial characterization, micropermeability, and nanoleakage analyses by confocal microscopy. The RMGIC-dentine interface layer showed no water absorption after 6 months of storage in PBS except for the interdiffusion layer of the silicon carbide (SiC)-abraded/ polyacrylic acid (PAA)-etched bonded dentine. The RMGIC applied onto dentine airabraded with BAG/H2O only or with BAG/PAA-fluid followed by etching procedures (10% PAA gel) showed no statistically significant reduction in lTBS after 6 months of storage in PBS. The abrasion procedures performed using BAG in combination with PAA might be a suitable strategy to enhance the bonding durability and the healing ability of RMGIC bonded to dentine.