Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dely, N.

  • Google
  • 1
  • 6
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Structure-property correlations in Y-Ca-Mg-sialon glasses: Physical and mechanical properties45citations

Places of action

Chart of shared publication
Deriano, S.
1 / 5 shared
Beuneu, B.
1 / 15 shared
Hampshire, S.
1 / 3 shared
Lefloch, M.
1 / 2 shared
Rouxel, Tanguy
1 / 71 shared
Sangleboeuf, Jean-Christophe
1 / 65 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Deriano, S.
  • Beuneu, B.
  • Hampshire, S.
  • Lefloch, M.
  • Rouxel, Tanguy
  • Sangleboeuf, Jean-Christophe
OrganizationsLocationPeople

article

Structure-property correlations in Y-Ca-Mg-sialon glasses: Physical and mechanical properties

  • Deriano, S.
  • Beuneu, B.
  • Hampshire, S.
  • Lefloch, M.
  • Rouxel, Tanguy
  • Dely, N.
  • Sangleboeuf, Jean-Christophe
Abstract

The physical and mechanical properties of 12 glasses from the Y-(Mg,Ca)-Si-Al-O-N and (Mg,Ca)-Si-Al-O-N systems were investigated. The effect of the substitution of magnesium for calcium through two series of glasses, one consisting of oxides glasses and the other of glasses containing 6 at.% of nitrogen (15 e/o N), was considered. The change of the glass transition temperature through the glass series provides evidence for a mixed-alkaline-earth effect between magnesium and calcium species. The indentation hardness (H), Young's modulus (E), and indentation fracture toughness (K(C)) were found to increase significantly with either the magnesium or the nitrogen content, and nitrogen also seems to enhance the effect of magnesium on the properties. The network structure was analyzed both by (29)Si and (27)Al Magic Angle Spinning Nuclear Magnetic Resonance and by neutron scattering experiment, which allows for the estimation of some atomic bond lengths in such complex glasses. Nitrogen was found to have a significant structural effect on the magnesium environment and on the glass polymerization degree, and hence on the glass properties.

Topics
  • experiment
  • Magnesium
  • Magnesium
  • glass
  • glass
  • Nitrogen
  • hardness
  • glass transition temperature
  • Calcium
  • fracture toughness
  • neutron scattering
  • spinning