People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Witek, Lukasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (42/42 displayed)
- 20233D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluationcitations
- 2023Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Modelcitations
- 2023Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration. citations
- 2022Residual stress estimated by nanoindentation in pontics and abutments of veneered zirconia fixed dental prosthesescitations
- 2022Physiochemical and bactericidal activity evaluationcitations
- 2022Temporary materials used in prosthodonticscitations
- 2022Stability of fatigued and aged ZTA compared to 3Y-TZP and Al2O3 ceramic systemscitations
- 2021Three-Dimensionally-Printed Bioactive Ceramic Scaffoldscitations
- 2021Nanoscale physico-mechanical properties of an aging resistant ZTA compositecitations
- 2021Effect of supplemental acid-etching on the early stages of osseointegrationcitations
- 2021Hydrothermal aging affects the three-dimensional fit and fatigue lifetime of zirconia abutmentscitations
- 2020Comparative analysis of elastomeric die materials for semidirect composite restorations.
- 2020Bone Tissue Engineering in the Growing Calvaria Using Dipyridamole-Coated, Three-Dimensionally-Printed Bioceramic Scaffoldscitations
- 2020Comparative analysis of elastomeric die materials for semidirect composite restorations
- 2020Microstructural, mechanical, and optical characterization of an experimental aging-resistant zirconia-toughened alumina (ZTA) compositecitations
- 2020Assessing osseointegration of metallic implants with boronized surface treatmentcitations
- 2020Aging resistant ZTA composite for dental applicationscitations
- 2019Long-term outcomes of 3D-printed bioactive ceramic scaffolds for regeneration of the pediatric skeleton
- 2019Osteointegrative and microgeometric comparison between micro-blasted and alumina blasting/acid etching on grade II and V titanium alloys (Ti-6Al-4V)citations
- 2019Physical and chemical characterization of synthetic bone mineral ink for robocasting applications
- 2019Dipyridamole Augments Three-Dimensionally Printed Bioactive Ceramic Scaffolds to Regenerate Craniofacial Bonecitations
- 2019Tissue-engineered alloplastic scaffolds for reconstruction of alveolar defectscitations
- 2019Comparative in vitro study of 3D robocasting scaffolds using beta tricalcium phosphate and synthetic bone mineral
- 2019Synergistic effects of implant macrogeometry and surface physicochemical modifications on osseointegrationcitations
- 2019Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffoldscitations
- 2019Nanomechanical and microstructural characterization of a zirconia-toughened alumina composite after agingcitations
- 2019Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturitycitations
- 2019Regeneration of a Pediatric Alveolar Cleft Model Using Three-Dimensionally Printed Bioceramic Scaffolds and Osteogenic Agentscitations
- 2018Form and functional repair of long bone using 3D-printed bioactive scaffoldscitations
- 2018Dipyridamole enhances osteogenesis of three-dimensionally printed bioactive ceramic scaffolds in calvarial defectscitations
- 2018Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defectscitations
- 2017Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffoldscitations
- 2017Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatmentcitations
- 2017Abstract 47. Dipyridamole-Containing 3D-Printed Bioactive Ceramic Scaffolds for the Treatment of Calvarial Defects
- 2015Geometrical versus Random beta-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behaviorcitations
- 2014The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materialscitations
- 2014The in vivo effect of P-15 coating on early osseointegrationcitations
- 2013MicroCT analysis of a retrieved root restored with a bonded fiber-reinforced composite dowelcitations
- 2012Physicochemical characterization and in vivo evaluation of amorphous and partially crystalline calcium phosphate coatings fabricated on Ti-6Al-4V implants by the plasma spray methodcitations
- 2012Abutment Design for Implant-Supported Indirect Composite Molar Crownscitations
- 2012Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogscitations
- 2011Additive CAD/CAM process for dental prosthesescitations
Places of action
Organizations | Location | People |
---|
article
Abutment Design for Implant-Supported Indirect Composite Molar Crowns
Abstract
<p>Purpose: To investigate the reliability of titanium abutments veneered with indirect composites for implant-supported crowns and the possibility to trace back the fracture origin by qualitative fractographic analysis. Materials and Methods: Large base (LB) (6.4-mm diameter base, with a 4-mm high cone in the center for composite retention), small base (SB-4) (5.2-mm base, 4-mm high cone), and small base with cone shortened to 2 mm (SB-2) Ti abutments were used. Each abutment received incremental layers of indirect resin composite until completing the anatomy of a maxillary molar crown. Step-stress accelerated-life fatigue testing (n = 18 each) was performed in water. Weibull curves with use stress of 200 N for 50,000 and 100,000 cycles were calculated. Probability Weibull plots examined the differences between groups. Specimens were inspected in light-polarized and scanning electron microscopes for fractographic analysis. Results: Use level probability Weibull plots showed Beta values of 0.27 for LB, 0.32 for SB-4, and 0.26 for SB-2, indicating that failures were not influenced by fatigue and damage accumulation. The data replotted as Weibull distribution showed no significant difference in the characteristic strengths between LB (794 N) and SB-4 abutments (836 N), which were both significantly higher than SB-2 (601 N). Failure mode was cohesive within the composite for all groups. Fractographic markings showed that failures initiated at the indentation area and propagated toward the margins of cohesively failed composite. Conclusions: Reliability was not influenced by abutment design. Qualitative fractographic analysis of the failed indirect composite was feasible.</p>