People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pearce, Carolyn
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022An amorphous sodium aluminate hydrate phase mediates aluminum coordination changes in highly alkaline sodium hydroxide solutionscitations
- 2018Stability, composition and core-shell particle structure of uranium(IV)-silicate colloidscitations
- 2018Response of Bentonite Microbial Communities to Stresses Relevant to Geodisposal of Radioactive Wastecitations
- 2016Radiation damage in biotite mica by accelerated α-particles: A synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy studycitations
- 2009Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic propertiescitations
- 2008Biomineralization: Linking the fossil record to the production of high value functional materialscitations
- 2007Time-resolved synchrotron X-ray powder diffraction study of biogenic nanomagnetitecitations
Places of action
Organizations | Location | People |
---|
article
Biomineralization: Linking the fossil record to the production of high value functional materials
Abstract
The microbial cell offers a highly efficient template for the formation of nanoparticles with interesting properties including high catalytic, magnetic and light-emitting activities. Thus biomineralization products are not only important in global biogeochemical cycles, but they also have considerable commercial potential, offering new methods for material synthesis that eliminate toxic organic solvents and minimize expensive high-temperature and pressure processing steps. In this review we describe a range of bacterial processes that can be harnessed to make precious metal catalysts from waste streams, ferrite spinels for biomedicine and catalysis, metal phosphates for environmental remediation and biomedical applications, and biogenic selenides for a range of optical devices. Recent molecular-scale studies have shown that the structure and properties of bionanominerals can be fine-tuned by subtle manipulations to the starting materials and to the genetic makeup of the cell. This review is dedicated to the late Terry Beveridge who contributed much to the field of biomineralization, and provided early models to rationalize the mechanisms of biomineral synthesis, including those of geological and commercial potential. © 2008 The Authors.