People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Westerhoff, Hans
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
How Geobacteraceae may dominate subsurface biodegradation: physiology of Geobacter metallireducens in slog-growth habitat-simulating retentostats.
Abstract
Geobacteraceae dominate many iron-reducing subsurface environments and are associated with biodegradation of organic pollutants. In order to enhance the understanding of the environmental role played by Geobacteraceae, the physiology of Geobacter metallireducens was investigated at the low growth rates found in its subsurface habitat. Cultivation in retentostats (a continuous culturing device with biomass retention) under electron acceptor and electron donor limitation enabled growth rates as low as 0.0008 h