Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ponter, Alan R. S.

  • Google
  • 2
  • 4
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2004Fatigue-creep and plastic collapse of notched bars14citations
  • 2003Linear matching method for creep rupture assessment24citations

Places of action

Chart of shared publication
Chen, Haofeng
2 / 10 shared
Willis, M.
1 / 2 shared
Evans, J.
1 / 13 shared
Engelhardt, M. J.
1 / 1 shared
Chart of publication period
2004
2003

Co-Authors (by relevance)

  • Chen, Haofeng
  • Willis, M.
  • Evans, J.
  • Engelhardt, M. J.
OrganizationsLocationPeople

article

Fatigue-creep and plastic collapse of notched bars

  • Chen, Haofeng
  • Willis, M.
  • Ponter, Alan R. S.
  • Evans, J.
Abstract

The paper describes a study of the application of a new assessment method, based on the linear matching method (LMM), to the creep fatigue of notched bars of Udimet 720Li at 650 °C. This high strength nickel based alloy is taken as typical of alloys used in high temperature gas turbine applications. The primary purpose of the study is to see whether it is possible to predict the failure modes for such alloys in terms of standard materials data by the evaluation of a sequence of simplified calculations corresponding to the steady state cyclic stress history. These calculations involve the evaluation of limit load, shakedown limit and ratchet limit for perfect plasticity, rapid cycle creep solutions and the evaluation of an elastic follow-up factor. Within the limitations of the tests, the correlation between predicted failure mode and observed mode is very good and the calculations clearly show up the differences between the two types of notched bars discussed. This implies that LM methods are well suited to the evaluation of failure modes in materials of this type.

Topics
  • impedance spectroscopy
  • polymer
  • nickel
  • strength
  • fatigue
  • plasticity
  • creep