People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alcock, Charles
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Fast identification of transits from light-curves
Abstract
We present an algorithm that allows fast and efficient detection of transits, including planetary transits, from light-curves. The method is based on building an ensemble of fiducial models and compressing the data using the MOPED algorithm. We describe the method and demonstrate its efficiency by finding planet-like transits in simulated Pan-STARRS light-curves. We show that that our method is independent of the size of the search space of transit parameters. In large sets of light-curves, we achieve speed up factors of order of $10^{8}$ times over the fullsearch. We discuss how the algorithm can be used in forthcoming large surveys like Pan-STARRS and LSST and how it may be optimized for future space missions like Kepler and COROT where most of the processing must be done on