Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salvaterra, Ruben

  • Google
  • 1
  • 2
  • 141

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Dust formation in very massive primordial supernovae141citations

Places of action

Chart of shared publication
Ferrara, A.
1 / 8 shared
Schneider, R.
1 / 39 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Ferrara, A.
  • Schneider, R.
OrganizationsLocationPeople

article

Dust formation in very massive primordial supernovae

  • Ferrara, A.
  • Salvaterra, Ruben
  • Schneider, R.
Abstract

At redshift z〉~ 5, Type II supernovae (SNeII) are the only known dust sources with evolutionary time-scales shorter than the Hubble time. We extend the model of dust formation in the ejecta of SNeII by Todini & Ferrara to investigate the same process in pair-instability supernovae (PISNe), which are though to arise from the explosion of the first, metal-free, very massive (140-260 M<SUB>solar</SUB>) cosmic stars.We find that 15-30 per cent of the PISN progenitor mass is converted into dust, a value 〉10 times higher than for SNeII; PISN dust depletion factors (the fraction of produced metals locked into dust grains) range between 0.3 and 0.7. These conclusions depend very weakly on the mass of the PISN stellar progenitor, which in contrast affects considerably the composition and size distribution. For the assumed temperature evolution, grain condensation starts 150-200 d after the explosion; the dominant compounds for all progenitor masses are SiO<SUB>2</SUB> and Mg<SUB>2</SUB>SiO<SUB>4</SUB> while the contribution of amorphous carbon and magnetite grains grows with progenitor mass; typical grain sizes range between 10<SUP>-3</SUP> and a few times 0.1 μm and are always smaller than 1 μm. We give a brief discussion of the implications of dust formation for the initial mass function evolution of the first stars, cosmic reionization and the intergalactic medium.

Topics
  • impedance spectroscopy
  • compound
  • amorphous
  • Carbon
  • grain
  • grain size